Papers
Topics
Authors
Recent
Search
2000 character limit reached

Data-driven sparse modeling of oscillations in plasma space propulsion

Published 11 Mar 2024 in physics.plasm-ph | (2403.06809v1)

Abstract: An algorithm to obtain data-driven models of oscillatory phenomena in plasma space propulsion systems is presented, based on sparse regression (SINDy) and Pareto front analysis. The algorithm can incorporate physical constraints, use data bootstrapping for additional robustness, and fine-tuning to different metrics. Standard, weak and integral SINDy formulations are discussed and compared. The scheme is benchmarked in the case of breathing-mode oscillations in Hall effect thrusters, using PIC/fluid simulation data. Models of varying complexity are obtained for the average plasma properties, and shown to have a clear physical interpretability and agreement with existing 0D models in the literature. Lastly, the algorithm applied is also shown to enable the identification of physical subdomains with qualitatively different plasma dynamics, providing valuable information for more advanced modeling approaches.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We're still in the process of identifying open problems mentioned in this paper. Please check back in a few minutes.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.