Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On Geometrically Convex Risk Measures (2403.06188v1)

Published 10 Mar 2024 in q-fin.RM and math.PR

Abstract: Geometrically convex functions constitute an interesting class of functions obtained by replacing the arithmetic mean with the geometric mean in the definition of convexity. As recently suggested, geometric convexity may be a sensible property for financial risk measures ([7,13,4]). We introduce a notion of GG-convex conjugate, parallel to the classical notion of convex conjugate introduced by Fenchel, and we discuss its properties. We show how GG-convex conjugation can be axiomatized in the spirit of the notion of general duality transforms introduced in [2,3]. We then move to the study of GG-convex risk measures, which are defined as GG-convex functionals defined on suitable spaces of random variables. We derive a general dual representation that extends analogous expressions presented in [4] under the additional assumptions of monotonicity and positive homogeneity. As a prominent example, we study the family of Orlicz risk measures. Finally, we introduce multiplicative versions of the convex and of the increasing convex order and discuss related consistency properties of law-invariant GG-convex risk measures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube