Papers
Topics
Authors
Recent
Search
2000 character limit reached

Skewed generalized parton distributions of proton from basis light-front quantization

Published 9 Mar 2024 in hep-ph and nucl-th | (2403.05922v1)

Abstract: We obtain all the leading-twist quark generalized parton distributions (GPDs) inside the proton at nonzero skewness within the basis light-front quantization framework. We employ the light-front wave functions of the proton from a light-front quantized Hamiltonian in the valence Fock sector consisting of a three-dimensional confinement potential and a one-gluon exchange interaction with fixed coupling. We find that the qualitative behaviors of our GPDs are similar to those of other theoretical calculations. We further examine the GPDs within the boost-invariant longitudinal coordinate, $\sigma=\frac{1}{2} b- P+$, which is identified as the Fourier conjugate of the skewness. The GPDs in the $\sigma$-space show diffraction patterns, which are akin to the diffractive scattering of a wave in optics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (103)
  1. doi:10.1016/j.ppnp.2023.104069.
  2. arXiv:hep-ph/0005108, doi:10.1103/PhysRevD.62.071503.
  3. arXiv:hep-ph/0207047, doi:10.1142/S0217751X03012370.
  4. arXiv:hep-ph/0110075, doi:10.1103/PhysRevD.66.111501.
  5. arXiv:hep-ph/0604262, doi:10.1016/j.physletb.2006.08.061.
  6. arXiv:hep-ph/0611159, doi:10.1103/PhysRevD.75.014003.
  7. arXiv:0811.0521, doi:10.1103/PhysRevD.79.034006.
  8. arXiv:1012.2627, doi:10.1103/PhysRevD.83.014004.
  9. arXiv:1501.04745, doi:10.1142/S0217751X15500104.
  10. arXiv:1501.05489, doi:10.1140/epjc/s10052-015-3486-6.
  11. arXiv:1509.00598, doi:10.1103/PhysRevD.92.074012.
  12. arXiv:1709.06877, doi:10.1140/epjc/s10052-017-5203-0.
  13. arXiv:hep-ph/9609381, doi:10.1103/PhysRevD.55.7114.
  14. arXiv:hep-ph/0106012, doi:10.1016/S0146-6410(01)00158-2.
  15. arXiv:0708.3569, doi:10.1140/epjc/s10052-007-0466-5.
  16. arXiv:hep-ph/9611433, doi:10.1103/PhysRevD.56.2982.
  17. arXiv:hep-ph/0110062, doi:10.1007/s100520200917.
  18. arXiv:2210.07995, doi:10.1103/PhysRevD.107.014007.
  19. arXiv:2204.00396, doi:10.1103/PhysRevD.105.094025.
  20. arXiv:2212.00655, doi:10.1007/JHEP03(2023)241.
  21. arXiv:hep-ph/9803316, doi:10.1103/PhysRevD.58.114008.
  22. arXiv:hep-ph/9811253, doi:10.1007/s100529901100.
  23. arXiv:2303.13668, doi:10.1103/PhysRevD.107.094035.
  24. arXiv:hep-ex/9808020, doi:10.1007/s100529901051.
  25. arXiv:hep-ex/0305028, doi:10.1016/j.physletb.2003.08.048.
  26. arXiv:hep-ex/0107005, doi:10.1016/S0370-2693(01)00939-X.
  27. arXiv:hep-ex/0505061, doi:10.1140/epjc/s2005-02345-3.
  28. arXiv:hep-ex/0106068, doi:10.1103/PhysRevLett.87.182001.
  29. arXiv:hep-ex/0605108, doi:10.1103/PhysRevD.75.011103.
  30. arXiv:0802.2499, doi:10.1088/1126-6708/2008/06/066.
  31. arXiv:nucl-ex/0607029, doi:10.1103/PhysRevLett.97.262002.
  32. arXiv:0709.0450, doi:10.1103/PhysRevLett.99.242501.
  33. arXiv:hep-ex/0107043, doi:10.1103/PhysRevLett.87.182002.
  34. arXiv:hep-ex/0605012, doi:10.1103/PhysRevLett.97.072002.
  35. arXiv:0711.4805, doi:10.1103/PhysRevLett.100.162002.
  36. doi:10.1140/epjad/s2004-03-008-x.
  37. arXiv:2111.02030, doi:10.1103/PhysRevD.105.054002.
  38. arXiv:2006.05760, doi:10.1103/PhysRevD.102.096014.
  39. arXiv:1212.1701, doi:10.1140/epja/i2016-16268-9.
  40. arXiv:2103.05419, doi:10.1016/j.nuclphysa.2022.122447.
  41. arXiv:2102.09222, doi:10.1007/s11467-021-1062-0.
  42. arXiv:1206.2913, doi:10.1088/0954-3899/39/7/075001.
  43. arXiv:2007.14491, doi:10.1088/1361-6471/abf3ba.
  44. arXiv:1208.1244, doi:10.1140/epja/i2012-12187-1.
  45. doi:10.1146/annurev-nucl-101917-021129.
  46. arXiv:hep-ph/9702379, doi:10.1103/PhysRevD.56.5511.
  47. arXiv:hep-ph/0109139, doi:10.1007/s10050-002-8794-1.
  48. arXiv:hep-ph/9710270, doi:10.1103/PhysRevD.57.4325.
  49. arXiv:hep-ph/9909489, doi:10.1103/PhysRevD.62.014024.
  50. arXiv:hep-ph/0307150, doi:10.1103/PhysRevD.69.094004.
  51. arXiv:hep-ph/0201265, doi:10.1140/epja/i2002-10120-y.
  52. arXiv:hep-ph/0207340, doi:10.1016/S0550-3213(02)01016-7.
  53. arXiv:hep-ph/0311016, doi:10.1016/j.nuclphysb.2003.12.037.
  54. arXiv:hep-ph/0410191, doi:10.1103/PhysRevD.71.014014.
  55. arXiv:1702.02493, doi:10.1103/PhysRevD.96.013006.
  56. arXiv:1506.04560, doi:10.1007/JHEP01(2016)165.
  57. arXiv:hep-ph/0601177, doi:10.1103/PhysRevD.73.094001.
  58. arXiv:hep-ph/0607213, doi:10.1016/j.nuclphysa.2006.10.006.
  59. arXiv:1010.2815, doi:10.1103/PhysRevD.83.036001.
  60. arXiv:1307.5128, doi:10.1103/PhysRevD.88.073006.
  61. arXiv:1703.00348, doi:10.1016/j.physletb.2017.06.010.
  62. arXiv:1608.08410, doi:10.1140/epjc/s10052-017-4775-z.
  63. arXiv:1801.09154, doi:10.1103/PhysRevLett.120.182001.
  64. arXiv:2209.14285, doi:10.1103/PhysRevD.107.054013.
  65. arXiv:hep-ph/0104198, doi:10.1103/PhysRevC.64.065204.
  66. arXiv:hep-ph/0109174, doi:10.1103/PhysRevD.65.074009.
  67. arXiv:hep-ph/0211386, doi:10.1103/PhysRevD.67.085020.
  68. arXiv:2308.08275, doi:10.1016/j.physletb.2023.138305.
  69. arXiv:1305.1539, doi:10.1103/PhysRevLett.110.262002.
  70. arXiv:2004.03543, doi:10.1103/RevModPhys.93.035005.
  71. arXiv:2112.07519, doi:10.1016/j.physletb.2021.136821.
  72. arXiv:2008.12474, doi:10.1103/PhysRevLett.127.182001.
  73. arXiv:2209.05373, doi:10.1103/PhysRevD.106.114512.
  74. arXiv:2108.10789, doi:10.1103/PhysRevD.105.034501.
  75. arXiv:2207.05768, doi:10.1007/JHEP09(2022)215.
  76. arXiv:2008.10573, doi:10.1103/PhysRevLett.125.262001.
  77. arXiv:hep-lat/0507001, doi:10.1016/j.physletb.2005.09.002.
  78. arXiv:hep-lat/0612032, doi:10.1103/PhysRevLett.98.222001.
  79. arXiv:1908.10706, doi:10.1103/PhysRevD.101.034519.
  80. arXiv:0905.1411, doi:10.1103/PhysRevC.81.035205.
  81. arXiv:1402.4195, doi:10.1016/j.physletb.2014.08.020.
  82. arXiv:2201.12770, doi:10.1016/j.physletb.2022.137005.
  83. arXiv:1901.11430, doi:10.1103/PhysRevLett.122.172001.
  84. arXiv:1911.10913, doi:10.1103/PhysRevD.102.016008.
  85. arXiv:2108.03909, doi:10.1103/PhysRevD.104.094036.
  86. arXiv:2106.04954, doi:10.1016/j.physletb.2022.136890.
  87. doi:10.1103/PhysRevD.108.094002.
  88. arXiv:2307.09869, doi:10.1103/PhysRevD.109.014015.
  89. arXiv:2202.00985, doi:10.1103/PhysRevD.105.094018.
  90. arXiv:2205.04714, doi:10.1016/j.physletb.2022.137360.
  91. arXiv:1404.6234, doi:10.1103/PhysRevD.91.105009.
  92. arXiv:1509.07212, doi:10.1016/j.physletb.2016.04.065.
  93. arXiv:1303.3273, doi:10.1103/PhysRevD.88.065014.
  94. arXiv:hep-ph/0307382, doi:10.1016/j.physrep.2003.08.002.
  95. arXiv:hep-ph/0510376, doi:10.1103/PhysRevD.72.094029.
  96. arXiv:2005.10286, doi:10.1103/PhysRevC.103.045204.
  97. arXiv:hep-ph/0205208, doi:10.1007/s10052-002-1016-9.
  98. arXiv:1807.01076, doi:10.1016/j.nuclphysb.2018.07.003.
  99. arXiv:hep-ph/0009254, doi:10.1016/S0550-3213(00)00695-7.
  100. arXiv:1912.08911, doi:10.1103/PhysRevC.102.022201.
  101. arXiv:2202.08635, doi:10.1103/PhysRevD.105.074024.
  102. arXiv:2211.02959, doi:10.1103/PhysRevD.107.074040.
  103. arXiv:2111.03194, doi:10.1103/PhysRevD.105.036009.
Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.