Papers
Topics
Authors
Recent
2000 character limit reached

Higher-Order Reverse Isoperimetric Inequalities for Log-concave Functions (2403.05712v3)

Published 8 Mar 2024 in math.MG and math.FA

Abstract: The Rogers-Shephard and Zhang's projection inequalities are two reverse, affine isoperimetric inequalities relating the volumes of a convex body and its difference body and polar projection body, respectively. Following a classical work by Schneider, both inequalities have been extended to the so-called higher-order setting. In this work, we establish the higher-order analogues for these inequalities in the setting of log-concave functions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. Rogers-Shephard and local Loomis-Whitney type inequalities. Math. Ann. 374, 3-4 (2019), 1719–1771.
  2. Zhang’s inequality for log-concave functions. In Geometric aspects of functional analysis. Vol. I, vol. 2256 of Lecture Notes in Math. Springer, Cham, [2020] ©2020, pp. 29–48.
  3. Rogers-Shephard inequality for log-concave functions. J. Funct. Anal. 271, 11 (2016), 3269–3299.
  4. John’s ellipsoid and the integral ratio of a log-concave function. J. Geom. Anal. 28, 2 (2018), 1182–1201.
  5. On Rogers-Shephard type inequalities for general measures. Int. Math. Res. Not. IMRN, 10 (2021), 7224–7261.
  6. Some remarks on petty projection of log-concave functions. J. Geom. Anal. 33, 8 (2023), Paper No. 260, 14.
  7. Convex symmetrization and applications. Ann. Inst. H. Poincaré C Anal. Non Linéaire 14, 2 (1997), 275–293.
  8. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
  9. On Godbersen’s conjecture. Geom. Dedicata 178 (2015), 337–350.
  10. The Santaló point of a function, and a functional form of the Santaló inequality. Mathematika 51, 1-2 (2004), 33–48 (2005).
  11. Ball, K. Logarithmically concave functions and sections of convex sets in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Studia Math. 88, 1 (1988), 69–84.
  12. Stability of the functional forms of the Blaschke-Santaló inequality. Monatsh. Math. 173, 2 (2014), 135–159.
  13. Bianchi, G. The covariogram problem. In Harmonic Analysis and Convexity, A. Koldobsky and A. Volberg, Eds., Adv. Anal. Geom. De Gruyter, 2023, pp. 37–82.
  14. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Analysis 22, 4 (1976), 366–389.
  15. Colesanti, A. Functional inequalities related to the Rogers-Shephard inequality. Mathematika 53, 1 (2006), 81–101.
  16. The first variation of the total mass of log-concave functions and related inequalities. Adv. Math. 244 (2013), 708–749.
  17. Minkowski valuations on convex functions. Calc. Var. Partial Differential Equations 56, 6 (2017), Paper No. 162, 29.
  18. Moment measures. J. Funct. Anal. 268, 12 (2015), 3834–3866.
  19. A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182, 2 (2004), 307–332.
  20. Dubuc, S. Critères de convexité et inégalités intégrales. Ann. Inst. Fourier (Grenoble) 27, 1 (1977), x, 135–165.
  21. Evans, L. C. Partial Differential Equations, 2nd ed., vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2010.
  22. The case of equality for an inverse Santaló functional inequality. Adv. Geom. 10, 4 (2010), 621–630.
  23. Transport proofs of some functional inverse Santaló inequalities. In High dimensional probability IX—the ethereal volume, vol. 80 of Progr. Probab. Birkhäuser/Springer, Cham, [2023] ©2023, pp. 123–142.
  24. Concentration of information content for convex measures. Electron. J. Probab. 25 (2020), Paper No. 20, 22.
  25. Some functional forms of Blaschke-Santaló inequality. Math. Z. 256, 2 (2007), 379–395.
  26. Increasing functions and inverse Santaló inequality for unconditional functions. Positivity 12, 3 (2008), 407–420.
  27. Some functional inverse Santaló inequalities. Adv. Math. 218, 5 (2008), 1430–1452.
  28. Gardner, R. J. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. (N.S.) 39, 3 (2002), 355–405.
  29. Affine inequalities and radial mean bodies. Amer. J. Math. 120, 3 (1998), 505–528.
  30. Affine isoperimetric inequalities for higher-order projection and centroid bodies. arXiv:2304.07859 (2023).
  31. General higher order lp isoperimetric and sobolev inequalities. arXiv:2305.17468 (2023).
  32. Affine fractional sobolev and isoperimetric inequalities. Preprint, arxiv: 2207.06375 (2022).
  33. Dual curvature measures for log-concave functions. J. Differential Geom. (2024+).
  34. Geometry of log-concave functions and measures. Geom. Dedicata 112 (2005), 169–182.
  35. Inequalities of the Kahane-Khinchin type and sections of Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-balls. Studia Math. 184, 3 (2008), 217–231.
  36. Weighted berwald’s inequality. To appear in Amer. J. Math. (2025).
  37. General measure extensions of projection bodies. Proc. Lond. Math. Soc. (3) 125, 5 (2022), 1083–1129.
  38. Lehec, J. A direct proof of the functional Santaló inequality. C. R. Math. Acad. Sci. Paris 347, 1-2 (2009), 55–58.
  39. Lehec, J. Partitions and functional Santaló inequalities. Arch. Math. (Basel) 92, 1 (2009), 89–94.
  40. Leindler, L. On a certain converse of Hölder’s inequality. II. Acta Sci. Math. (Szeged) 33, 3-4 (1972), 217–223.
  41. Lin, Y. The Petty projection inequality for sets of finite perimeter. Calc. Var. Partial Differential Equations 60, 5 (2021), Paper No. 196, 18.
  42. Ludwig, M. Valuations on function spaces. Adv. Geom. 11, 4 (2011), 745–756.
  43. Ludwig, M. Valuations on Sobolev spaces. Amer. J. Math. 134, 3 (2012), 827–842.
  44. Optimal Sobolev norms and the Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT Minkowski problem. Int. Math. Res. Not. (2006), Art. ID 62987, 21.
  45. Marín Sola, F. On general concavity extensions of Grünbaum type inequalities. Bull. Braz. Math. Soc. (N.S.) 55, 1 (2024), Paper No. 2, 17.
  46. Matheron, G. Random Sets and Integral Geometry. Wiley Series in Probability and Statistics. Wiley, Michigan, 1975.
  47. Grünbaum-type inequality for log-concave functions. Bulletin of the London Mathematical Society 50 (2018), 745–752.
  48. Asymptotic theory of finite-dimensional normed spaces, vol. 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov.
  49. Grünbaum’s inequality for sections. J. Funct. Anal. 275, 9 (2018), 2516–2537.
  50. Petty, C. M. Isoperimetric problems. In Proceedings of the Conference on Convexity and Combinatorial Geometry (Univ. Oklahoma, Norman, Okla., 1971). Dept. Math., Univ. Oklahoma, Norman, Oklahoma, 1971, pp. 26–41.
  51. Prékopa, A. Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. (Szeged) 32 (1971), 301–316.
  52. Prékopa, A. On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34 (1973), 335–343.
  53. The difference body of a convex body. Arch. Math. (Basel) 8 (1957), 220–233.
  54. Rotem, L. Surface area measures of log-concave functions. J. Anal. Math. 147, 1 (2022), 373–400.
  55. Rotem, L. The anisotropic total variation and surface area measures. In Geometric aspects of functional analysis, vol. 2327 of Lecture Notes in Math. Springer, Cham, [2023] ©2023, pp. 297–312.
  56. Roysdon, M. Rogers-Shephard type inequalities for sections. J. Math. Anal. Appl. 487, 1 (2020), 123958.
  57. Schneider, R. Eine Verallgemeinerung des Differenzenkörpers. Monatsh. Math. 74 (1970), 258–272.
  58. Schneider, R. Convex Bodies: the Brunn-Minkowski Theory, 2nd expanded ed., vol. 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, Cambridge, UK, 2014.
  59. Ulivelli, J. First variation of functional wulff shapes. preprint (2024), arXiv:2312.11172.
  60. Wang, T. The affine Sobolev-Zhang inequality on B⁢V⁢(ℝn)𝐵𝑉superscriptℝ𝑛BV(\mathbb{R}^{n})italic_B italic_V ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ). Adv. Math. 230, 4-6 (2012), 2457–2473.
  61. Willson, S. J. A semigroup on the space of compact convex bodies. SIAM J. Math. Anal. 11, 3 (1980), 448–457.
  62. Yang, D. Affine integral geometry from a differential viewpoint. In Handbook of Geometric Analysis, No. 2, Advanced Lectures in Mathematics. 2010, pp. 359–390.
  63. Zhang, G. Restricted chord projection and affine inequalities. Geom. Dedicata 39, 2 (1991), 213–222.
  64. Zhang, G. The affine Sobolev inequality. J. Differential Geom. 53, 1 (1999), 183–202.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 0 likes about this paper.