Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Goldstone Boson Equivalence for Inflation (2403.05274v2)

Published 8 Mar 2024 in hep-th, astro-ph.CO, and hep-ph

Abstract: The effective field theory of single-field inflation characterizes the inflationary epoch in terms of a pattern of symmetry breaking. An operator acquires a time-dependent vacuum expectation value, defining a preferred spatial slicing. In the absence of dynamical gravity, the fluctuations around the time-dependent background are described by the Goldstone boson associated with this symmetry breaking process. With gravity, the Goldstone is eaten by the metric, becoming the scalar metric fluctuation. In this paper, we will show that in general single-field inflation, the statistics of scalar metric fluctuations are given by the statistics of this Goldstone boson decoupled from gravity up to corrections that are controlled as an expansion in slow-roll parameters. This even holds in the presence of additional parameters, like the speed of sound, that naively enhance the impact of the gravitational terms. In the process, we derive expressions for leading and sub-leading gravitational corrections to all-orders in the Goldstone boson.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (75)
  1. A. Achúcarro et al., “Inflation: Theory and Observations,” arXiv:2203.08128 [astro-ph.CO].
  2. Planck Collaboration, Y. Akrami et al., “Planck 2018 results. IX. Constraints on primordial non-Gaussianity,” Astron. Astrophys. 641 (2020) A9, arXiv:1905.05697 [astro-ph.CO].
  3. SPHEREx Collaboration, O. Doré et al., “Cosmology with the SPHEREX All-Sky Spectral Survey,” arXiv:1412.4872 [astro-ph.CO].
  4. DESI Collaboration, D. J. Schlegel et al., “A Spectroscopic Road Map for Cosmic Frontier: DESI, DESI-II, Stage-5,” arXiv:2209.03585 [astro-ph.CO].
  5. D. J. Schlegel et al., “The MegaMapper: A Stage-5 Spectroscopic Instrument Concept for the Study of Inflation and Dark Energy,” arXiv:2209.04322 [astro-ph.IM].
  6. C. L. Chang et al., “Report of the Topical Group on Cosmic Frontier 5 Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before for Snowmass 2021,” in Snowmass 2021. 9, 2022. arXiv:2209.08265 [hep-ex].
  7. J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary models,” JHEP 05 (2003) 013, arXiv:astro-ph/0210603.
  8. P. Creminelli and M. Zaldarriaga, “Single field consistency relation for the 3-point function,” JCAP 10 (2004) 006, arXiv:astro-ph/0407059.
  9. J. M. Bardeen, “Gauge Invariant Cosmological Perturbations,” Phys. Rev. D 22 (1980) 1882–1905.
  10. D. S. Salopek and J. R. Bond, “Nonlinear evolution of long wavelength metric fluctuations in inflationary models,” Phys. Rev. D 42 (1990) 3936–3962.
  11. D. H. Lyth, C. Ungarelli, and D. Wands, “The Primordial density perturbation in the curvaton scenario,” Phys. Rev. D 67 (2003) 023503, arXiv:astro-ph/0208055.
  12. M. Zaldarriaga, “Non-Gaussianities in models with a varying inflaton decay rate,” Phys. Rev. D 69 (2004) 043508, arXiv:astro-ph/0306006.
  13. M. Sasaki, J. Valiviita, and D. Wands, “Non-Gaussianity of the primordial perturbation in the curvaton model,” Phys. Rev. D 74 (2006) 103003, arXiv:astro-ph/0607627.
  14. X. Chen and Y. Wang, “Quasi-Single Field Inflation and Non-Gaussianities,” JCAP 04 (2010) 027, arXiv:0911.3380 [hep-th].
  15. L. Senatore and M. Zaldarriaga, “The Effective Field Theory of Multifield Inflation,” JHEP 04 (2012) 024, arXiv:1009.2093 [hep-th].
  16. D. Baumann and D. Green, “Signatures of Supersymmetry from the Early Universe,” Phys. Rev. D 85 (2012) 103520, arXiv:1109.0292 [hep-th].
  17. N. Arkani-Hamed and J. Maldacena, “Cosmological Collider Physics,” arXiv:1503.08043 [hep-th].
  18. N. Arkani-Hamed, P. Creminelli, S. Mukohyama, and M. Zaldarriaga, “Ghost inflation,” JCAP 04 (2004) 001, arXiv:hep-th/0312100.
  19. M. Alishahiha, E. Silverstein, and D. Tong, “DBI in the sky,” Phys. Rev. D 70 (2004) 123505, arXiv:hep-th/0404084.
  20. X. Chen, M.-x. Huang, S. Kachru, and G. Shiu, “Observational signatures and non-Gaussianities of general single field inflation,” JCAP 01 (2007) 002, arXiv:hep-th/0605045.
  21. P. Creminelli, M. A. Luty, A. Nicolis, and L. Senatore, “Starting the Universe: Stable Violation of the Null Energy Condition and Non-standard Cosmologies,” JHEP 12 (2006) 080, arXiv:hep-th/0606090.
  22. C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, “The Effective Field Theory of Inflation,” JHEP 03 (2008) 014, arXiv:0709.0293 [hep-th].
  23. J. M. Cornwall, D. N. Levin, and G. Tiktopoulos, “Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix,” Phys. Rev. D 10 (1974) 1145. [Erratum: Phys.Rev.D 11, 972 (1975)].
  24. B. W. Lee, C. Quigg, and H. B. Thacker, “Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass,” Phys. Rev. D 16 (1977) 1519.
  25. M. S. Chanowitz and M. K. Gaillard, “The TeV Physics of Strongly Interacting W’s and Z’s,” Nucl. Phys. B 261 (1985) 379–431.
  26. G. J. Gounaris, R. Kogerler, and H. Neufeld, “Relationship Between Longitudinally Polarized Vector Bosons and their Unphysical Scalar Partners,” Phys. Rev. D 34 (1986) 3257.
  27. Y.-P. Yao and C. P. Yuan, “Modification of the Equivalence Theorem Due to Loop Corrections,” Phys. Rev. D 38 (1988) 2237.
  28. J. Bagger and C. Schmidt, “Equivalence Theorem Redux,” Phys. Rev. D 41 (1990) 264.
  29. H. G. J. Veltman, “The Equivalence Theorem,” Phys. Rev. D 41 (1990) 2294.
  30. D. Baumann and D. Green, “Equilateral Non-Gaussianity and New Physics on the Horizon,” JCAP 09 (2011) 014, arXiv:1102.5343 [hep-th].
  31. C. Cheung, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, “On the consistency relation of the 3-point function in single field inflation,” JCAP 02 (2008) 021, arXiv:0709.0295 [hep-th].
  32. L. Senatore and M. Zaldarriaga, “The constancy of ζ𝜁\zetaitalic_ζ in single-clock Inflation at all loops,” JHEP 09 (2013) 148, arXiv:1210.6048 [hep-th].
  33. V. Assassi, D. Baumann, and D. Green, “Symmetries and Loops in Inflation,” JHEP 02 (2013) 151, arXiv:1210.7792 [hep-th].
  34. T. Cohen and D. Green, “Soft de Sitter Effective Theory,” JHEP 12 (2020) 041, arXiv:2007.03693 [hep-th].
  35. S. Weinberg, “Adiabatic modes in cosmology,” Phys. Rev. D 67 (2003) 123504, arXiv:astro-ph/0302326.
  36. P. Creminelli, J. Noreña, and M. Simonović, “Conformal consistency relations for single-field inflation,” JCAP 07 (2012) 052, arXiv:1203.4595 [hep-th].
  37. K. Hinterbichler, L. Hui, and J. Khoury, “Conformal Symmetries of Adiabatic Modes in Cosmology,” JCAP 08 (2012) 017, arXiv:1203.6351 [hep-th].
  38. K. Hinterbichler, L. Hui, and J. Khoury, “An Infinite Set of Ward Identities for Adiabatic Modes in Cosmology,” JCAP 01 (2014) 039, arXiv:1304.5527 [hep-th].
  39. E. Pajer, F. Schmidt, and M. Zaldarriaga, “The Observed Squeezed Limit of Cosmological Three-Point Functions,” Phys. Rev. D 88 no. 8, (2013) 083502, arXiv:1305.0824 [astro-ph.CO].
  40. E. Pajer, “Building a Boostless Bootstrap for the Bispectrum,” JCAP 01 (2021) 023, arXiv:2010.12818 [hep-th].
  41. N. Arkani-Hamed, D. Baumann, H. Lee, and G. L. Pimentel, “The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities,” JHEP 04 (2020) 105, arXiv:1811.00024 [hep-th].
  42. S. Jazayeri, E. Pajer, and D. Stefanyszyn, “From locality and unitarity to cosmological correlators,” JHEP 10 (2021) 065, arXiv:2103.08649 [hep-th].
  43. P. Benincasa, “Amplitudes meet Cosmology: A (Scalar) Primer,” arXiv:2203.15330 [hep-th].
  44. L. Senatore and M. Zaldarriaga, “A Naturally Large Four-Point Function in Single Field Inflation,” JCAP 01 (2011) 003, arXiv:1004.1201 [hep-th].
  45. D. Baumann, D. Green, H. Lee, and R. A. Porto, “Signs of Analyticity in Single-Field Inflation,” Phys. Rev. D 93 no. 2, (2016) 023523, arXiv:1502.07304 [hep-th].
  46. D. Baumann, D. Green, and T. Hartman, “Dynamical Constraints on RG Flows and Cosmology,” JHEP 12 (2019) 134, arXiv:1906.10226 [hep-th].
  47. D. Green, Y. Huang, and C.-H. Shen, “Inflationary Adler conditions,” Phys. Rev. D 107 no. 4, (2023) 043534, arXiv:2208.14544 [hep-th].
  48. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  49. Planck Collaboration, Y. Akrami et al., “Planck 2018 results. X. Constraints on inflation,” Astron. Astrophys. 641 (2020) A10, arXiv:1807.06211 [astro-ph.CO].
  50. A. Slosar et al., “Scratches from the Past: Inflationary Archaeology through Features in the Power Spectrum of Primordial Fluctuations,” Bull. Am. Astron. Soc. 51 no. 3, (2019) 98, arXiv:1903.09883 [astro-ph.CO].
  51. X. Chen, R. Easther, and E. A. Lim, “Large Non-Gaussianities in Single Field Inflation,” JCAP 06 (2007) 023, arXiv:astro-ph/0611645.
  52. X. Chen, R. Easther, and E. A. Lim, “Generation and Characterization of Large Non-Gaussianities in Single Field Inflation,” JCAP 04 (2008) 010, arXiv:0801.3295 [astro-ph].
  53. R. Flauger, L. McAllister, E. Pajer, A. Westphal, and G. Xu, “Oscillations in the CMB from Axion Monodromy Inflation,” JCAP 06 (2010) 009, arXiv:0907.2916 [hep-th].
  54. R. Flauger and E. Pajer, “Resonant Non-Gaussianity,” JCAP 01 (2011) 017, arXiv:1002.0833 [hep-th].
  55. S. R. Behbahani, A. Dymarsky, M. Mirbabayi, and L. Senatore, “(Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation,” JCAP 12 (2012) 036, arXiv:1111.3373 [hep-th].
  56. S. R. Behbahani and D. Green, “Collective Symmetry Breaking and Resonant Non-Gaussianity,” JCAP 11 (2012) 056, arXiv:1207.2779 [hep-th].
  57. R. Flauger, L. McAllister, E. Silverstein, and A. Westphal, “Drifting Oscillations in Axion Monodromy,” JCAP 10 (2017) 055, arXiv:1412.1814 [hep-th].
  58. R. Flauger, M. Mirbabayi, L. Senatore, and E. Silverstein, “Productive Interactions: heavy particles and non-Gaussianity,” JCAP 10 (2017) 058, arXiv:1606.00513 [hep-th].
  59. E. Pajer and D. Stefanyszyn, “Symmetric Superfluids,” JHEP 06 (2019) 008, arXiv:1812.05133 [hep-th].
  60. E. Pajer, D. Stefanyszyn, and J. Supel, “The Boostless Bootstrap: Amplitudes without Lorentz boosts,” JHEP 12 (2020) 198, arXiv:2007.00027 [hep-th]. [Erratum: JHEP 04, 023 (2022)].
  61. D. Green and Y. Huang, “Flat space analog for the quantum origin of structure,” Phys. Rev. D 106 no. 2, (2022) 023531, arXiv:2203.10042 [hep-th].
  62. L. Hui, A. Joyce, I. Komissarov, K. Parmentier, L. Santoni, and S. S. C. Wong, “Soft theorems for boosts and other time symmetries,” JHEP 02 (2023) 123, arXiv:2210.16276 [hep-th].
  63. C. Cheung, M. Derda, A. Helset, and J. Parra-Martinez, “Soft phonon theorems,” JHEP 08 (2023) 103, arXiv:2301.11363 [hep-th].
  64. D. Baumann, D. Green, and R. A. Porto, “B-modes and the Nature of Inflation,” JCAP 01 (2015) 016, arXiv:1407.2621 [hep-th].
  65. T. Grall, S. Jazayeri, and D. Stefanyszyn, “The cosmological phonon: symmetries and amplitudes on sub-horizon scales,” JHEP 11 (2020) 097, arXiv:2005.12937 [hep-th].
  66. D. Seery, J. E. Lidsey, and M. S. Sloth, “The inflationary trispectrum,” JCAP 01 (2007) 027, arXiv:astro-ph/0610210.
  67. E. Pajer, G. L. Pimentel, and J. V. S. Van Wijck, “The Conformal Limit of Inflation in the Era of CMB Polarimetry,” JCAP 06 (2017) 009, arXiv:1609.06993 [hep-th].
  68. J. Bonifacio, H. Goodhew, A. Joyce, E. Pajer, and D. Stefanyszyn, “The graviton four-point function in de Sitter space,” JHEP 06 (2023) 212, arXiv:2212.07370 [hep-th].
  69. X. Chen, M.-x. Huang, and G. Shiu, “The Inflationary Trispectrum for Models with Large Non-Gaussianities,” Phys. Rev. D 74 (2006) 121301, arXiv:hep-th/0610235.
  70. X. Chen, B. Hu, M.-x. Huang, G. Shiu, and Y. Wang, “Large Primordial Trispectra in General Single Field Inflation,” JCAP 08 (2009) 008, arXiv:0905.3494 [astro-ph.CO].
  71. D. Baumann and D. Green, “A Field Range Bound for General Single-Field Inflation,” JCAP 05 (2012) 017, arXiv:1111.3040 [hep-th].
  72. R. Flauger, V. Gorbenko, A. Joyce, L. McAllister, G. Shiu, and E. Silverstein, “Snowmass White Paper: Cosmology at the Theory Frontier,” in Snowmass 2021. 3, 2022. arXiv:2203.07629 [hep-th].
  73. S. Weinberg, “Quantum contributions to cosmological correlations,” Phys. Rev. D 72 (2005) 043514, arXiv:hep-th/0506236.
  74. D. Baumann, D. Green, A. Joyce, E. Pajer, G. L. Pimentel, C. Sleight, and M. Taronna, “Snowmass White Paper: The Cosmological Bootstrap,” in Snowmass 2021. 3, 2022. arXiv:2203.08121 [hep-th].
  75. G. Cabass, E. Pajer, and F. Schmidt, “How Gaussian can our Universe be?,” JCAP 01 (2017) 003, arXiv:1612.00033 [hep-th].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: