Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 137 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Quantum Many-body Scar Models in One Dimensional Spin Chains (2403.05015v1)

Published 8 Mar 2024 in quant-ph, cond-mat.stat-mech, and cond-mat.str-el

Abstract: The phenomenon of quantum many-body scars has received widespread attention both in theoretical and experimental physics in recent years due to its unique physical properties. In this paper, based on the $su(2)$ algebraic relations, we propose a general method for constructing scar models by combining simple modules.This allows us to investigate many-body scar phenomena in high-spin systems. We numerically verify the thermalization and non-integrability of this model and demonstrate the dynamical properties of the scar states. We also provide a theoretical analysis of the properties of these scar states. For spin-$1$ case, we find that our 1D chain model reduces to the famous PXP model[C. J. Turner et al. Phys. Rev. B 98, 155134(2018)] under special parameter condition. In addition, due to the continuous tunability of the parameters, our model also enables us to investigate the transitions of QMBS from non-integrable to integrable system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. S. S. Hannes Bernien, Probing many-body dynamics on a 51-atom quantum simulator, Nature 551 (2017).
  2. J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
  3. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
  4. C. J. Turner, Weak ergodicity breaking from quantum many-body scars, Nat. Phys. 14, 745 (2018).
  5. T. Iadecola, M. Schecter, and S. Xu, Quantum many-body scars from magnon condensation, Phys. Rev. B 100, 184312 (2019).
  6. S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and Hilbert space fragmentation: a review of exact results, Rep. Prog. Phys 85, 086501 (2022).
  7. L. Pan and H. Zhai, Composite spin approach to the blockade effect in rydberg atom arrays, Phys. Rev. Res. 4, L032037 (2022).
  8. K. Omiya and M. Müller, Fractionalization paves the way to local projector embeddings of quantum many-body scars, Phys. Rev. B 108, 054412 (2023a).
  9. G. Francica and L. Dell’Anna, Hilbert space fragmentation in a long-range system, Phys. Rev. B 108, 045127 (2023).
  10. N. Shibata, N. Yoshioka, and H. Katsura, Onsager’s scars in disordered spin chains, Phys. Rev. Lett. 124, 180604 (2020).
  11. Q. Hummel, K. Richter, and P. Schlagheck, Genuine many-body quantum scars along unstable modes in Bose-Hubbard systems, Phys. Rev. Lett. 130, 250402 (2023).
  12. T. Iadecola and M. Žnidarič, Exact localized and ballistic eigenstates in disordered chaotic spin ladders and the Fermi-Hubbard model, Phys. Rev. Lett. 123, 036403 (2019).
  13. S. Mohapatra and A. C. Balram, Pronounced quantum many-body scars in the one-dimensional spin-1 Kitaev model, Phys. Rev. B 107, 235121 (2023).
  14. D. Mondal, S. Sinha, and S. Sinha, Chaos and quantum scars in a coupled top model, Phys. Rev. E 102, 020101 (2020).
  15. K. Omiya and M. Müller, Quantum many-body scars in bipartite rydberg arrays originating from hidden projector embedding, Phys. Rev. A 107, 023318 (2023b).
  16. D. Yuan, S.-Y. Zhang, and D.-L. Deng, Exact quantum many-body scars in higher-spin kinetically constrained models, arXiv: 2307, 06357 (2023).
  17. D. K. Mark and O. I. Motrunich, η𝜂\etaitalic_η-pairing states as true scars in an extended Hubbard model, Phys. Rev. B 102, 075132 (2020).
  18. M. V. Berry, M. Tabor, and J. M. Ziman, Level clustering in the regular spectrum, Proc. Math. Phys. Sci. 356, 375 (1977).
  19. A. M. Alhambra, A. Anshu, and H. Wilming, Revivals imply quantum many-body scars, Phys. Rev. B 101, 205107 (2020).
  20. K. Bull, I. Martin, and Z. Papić, Systematic construction of scarred many-body dynamics in 1d lattice models, Phys. Rev. Lett. 123, 030601 (2019).
  21. M. Schecter and T. Iadecola, Weak ergodicity breaking and quantum many-body scars in spin-1 x⁢y𝑥𝑦xyitalic_x italic_y magnets, Phys. Rev. Lett. 123, 147201 (2019).
  22. D. K. Mark, C.-J. Lin, and O. I. Motrunich, Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models, Phys. Rev. B 101, 195131 (2020).
  23. M. Medenjak, B. Buča, and D. Jaksch, Isolated Heisenberg magnet as a quantum time crystal, Phys. Rev. B 102, 041117 (2020).
  24. B. Buča, J. Tindall, and D. Jaksch, Non-stationary coherent quantum many-body dynamics through dissipation, Nat. Commun. 10, 1730 (2019).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube