Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Robust Data-Driven Automated Recovery of Symbolic Conservation Laws from Limited Data (2403.04889v1)

Published 7 Mar 2024 in math.NA and cs.NA

Abstract: Conservation laws are an inherent feature in many systems modeling real world phenomena, in particular, those modeling biological and chemical systems. If the form of the underlying dynamical system is known, linear algebra and algebraic geometry methods can be used to identify the conservation laws. Our work focuses on using data-driven methods to identify the conservation law(s) in the absence of the knowledge of system dynamics. Building in part upon the ideas proposed in [arXiv:1811.00961], we develop a robust data-driven computational framework that automates the process of identifying the number and type of the conservation law(s) while keeping the amount of required data to a minimum. We demonstrate that due to relative stability of singular vectors to noise we are able to reconstruct correct conservation laws without the need for excessive parameter tuning. While we focus primarily on biological examples, the framework proposed herein is suitable for a variety of data science applications and can be coupled with other machine learning approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. E. Kaiser, J. N. Kutz, and S. L. Brunton, “Discovering conservation laws from data for control,” in 2018 IEEE Conference on Decision and Control (CDC), pp. 6415–6421, IEEE, 2018.
  2. M. Feinberg, Foundations of chemical reaction network theory. Springer, 2019.
  3. T. Oellerich, M. Emelianenko, L. A. Liotta, and R. P. Araujo, “Biological networks with singular Jacobians: their origins and adaptation criteria,” bioRxiv 2021.03.01.433197, 2021.
  4. A. Dickenstein, “Biochemical reaction networks: An invitation for algebraic geometers,” in Mathematical congress of the Americas, vol. 656, pp. 65–83, Contemp. Math, 2016.
  5. Springer, 2011.
  6. R. O. Popovych and A. Bihlo, “Inverse problem on conservation laws,” Physica D: Nonlinear Phenomena, vol. 401, p. 132175, 2020.
  7. I. M. Anderson and J. Pohjanpelto, “Symmetries, conservation laws and variational principles for vector field theories,” in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 120, pp. 369–384, Cambridge University Press, 1996.
  8. L. Peng, “Symmetries, conservation laws, and Noether’s theorem for differential-difference equations,” Studies in applied mathematics, vol. 139, no. 3, pp. 457–502, 2017.
  9. PhD thesis, Växjö university press, 2009.
  10. Springer Science & Business Media, 1993.
  11. A. Holiday, M. Kooshkbaghi, J. M. Bello-Rivas, C. W. Gear, A. Zagaris, and I. G. Kevrekidis, “Manifold learning for parameter reduction,” Journal of computational physics, vol. 392, pp. 419–431, 2019.
  12. Z. Liu, V. Madhavan, and M. Tegmark, “Machine learning conservation laws from differential equations,” Physical Review E, vol. 106, no. 4, p. 045307, 2022.
  13. Z. Liu, P. O. Sturm, S. Bharadwaj, S. Silva, and M. Tegmark, “Discovering new interpretable conservation laws as sparse invariants,” 2023.
  14. S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural networks,” Advances in neural information processing systems, vol. 32, 2019.
  15. P. Toth, D. J. Rezende, A. Jaegle, S. Racanière, A. Botev, and I. Higgins, “Hamiltonian generative networks,” arXiv preprint arXiv:1909.13789, 2019.
  16. Z. Liu and M. Tegmark, “Machine learning conservation laws from trajectories,” Physical Review Letters, vol. 126, no. 18, p. 180604, 2021.
  17. S. Ha and H. Jeong, “Discovering conservation laws from trajectories via machine learning,” 2021.
  18. Y.-i. Mototake, “Interpretable conservation law estimation by deriving the symmetries of dynamics from trained deep neural networks,” Physical Review E, vol. 103, no. 3, p. 033303, 2021.
  19. P. Y. Lu, R. Dangovski, and M. Soljačić, “Discovering conservation laws using optimal transport and manifold learning,” Nature Communications, vol. 14, no. 1, p. 4744, 2023.
  20. S. Arora, A. Bihlo, R. Brecht, and P. Holba, “Model-free machine learning of conservation laws from data,” arXiv preprint arXiv:2301.07503, 2023.
  21. W. Zhang, S. Das, T.-W. Weng, A. Megretski, L. Daniel, and L. M. Nguyen, “Imposing conservation properties in deep dynamics modeling via contrastive learning,” 2022.
  22. T. Readshaw, W. P. Jones, and S. Rigopoulos, “On the incorporation of conservation laws in machine learning tabulation of kinetics for reacting flow simulation,” Physics of Fluids, vol. 35, no. 4, 2023.
  23. G.-Z. Wu, Y. Fang, Y.-Y. Wang, and C.-Q. Dai, “Modified physics-informed neural network method based on the conservation law constraint and its prediction of optical solitons,” 2021.
  24. K. Lee and K. T. Carlberg, “Deep conservation: A latent-dynamics model for exact satisfaction of physical conservation laws,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 277–285, 2021.
  25. J.-C. Loiseau and S. L. Brunton, “Constrained sparse Galerkin regression,” Journal of Fluid Mechanics, vol. 838, pp. 42–67, 2018.
  26. J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decomposition with control,” SIAM Journal on Applied Dynamical Systems, vol. 15, no. 1, pp. 142–161, 2016.
  27. S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Sparse identification of nonlinear dynamics with control (SINDYc),” IFAC-PapersOnLine, vol. 49, no. 18, pp. 710–715, 2016.
  28. J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Generalizing Koopmantheory to allow for inputs and control,” SIAM Journal on Applied Dynamical Systems, vol. 17, no. 1, pp. 909–930, 2018.
  29. S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” Proceedings of the national academy of sciences, vol. 113, no. 15, pp. 3932–3937, 2016.
  30. M. Emelianenko, D. Torrejon, M. A. DeNardo, A. K. Socolofsky, A. D. Ryabov, and T. J. Collins, “Estimation of rate constants in nonlinear reactions involving chemical inactivation of oxidation catalysts,” Journal of Mathematical Chemistry, vol. 52, pp. 1460–1476, 2014.
  31. A. Iserles, A first course in the numerical analysis of differential equations. No. 44, Cambridge university press, 2009.
  32. J. Nocedal and S. J. Wright, Numerical Optimization. Springer Series in Operations Research and Financial Engineering, Springer New York, NY, 2 ed., 2006.
  33. R. Chartrand, “Numerical differentiation of noisy, nonsmooth data,” International Scholarly Research Notices, vol. 2011, 2011.
  34. F. Van Breugel, J. N. Kutz, and B. W. Brunton, “Numerical differentiation of noisy data: A unifying multi-objective optimization framework,” IEEE Access, vol. 8, pp. 196865–196877, 2020.
  35. J. W. Demmel, Applied numerical linear algebra. SIAM, 1997.
  36. G. H. Golub and C. F. van Loan, Matrix Computations. JHU Press, 4 ed., 2013.
  37. Q. Qu, J. Sun, and J. Wright, “Finding a sparse vector in a subspace: Linear sparsity using alternating directions,” IEEE Transactions on Information Theory, vol. 62, no. 10, pp. 5855–5880, 2016.
  38. L.-A. Gottlieb and T. Neylon, “Matrix sparsification and the sparse null space problem,” in International Workshop on Randomization and Approximation Techniques in Computer Science, pp. 205–218, Springer, 2010.
  39. A. Mahdi, A. Ferragut, C. Valls, and C. Wiuf, “Conservation laws in biochemical reaction networks,” SIAM Journal on Applied Dynamical Systems, vol. 16, no. 4, pp. 2213–2232, 2017.
  40. M. Stewart, “Perturbation of the SVD in the presence of small singular values,” Linear algebra and its applications, vol. 419, no. 1, pp. 53–77, 2006.
  41. H. Weyl, “Das asymptotische verteilungsgestezder eigenwertlinearer partieller di erentialgleichungen mit einer anwendungaufder,” Theorieder Hohlraumstrahlung Mathematische Annalen, vol. 71, 1912.
  42. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems. SIAM, 1995.
  43. F. Van Breugel, Y. Liu, B. W. Brunton, and J. N. Kutz, “PyNumDiff: A python package for numerical differentiation of noisy time-series data,” Journal of Open Source Software, vol. 7, no. 71, p. 4078, 2022.
  44. J. Wagner, Regularised differentiation of measurement data in systems for healthcare-oriented monitoring of elderly persons. PhD thesis, The Institute of Radioelectronics and Multimedia Technology, 2020.
  45. J. Wagner, “Regularised numerical differentiation,” 2023.
  46. S. Lu and Y. Wang, “First and second order numerical differentiation with Tikhonov regularization,” Frontiers of Mathematics in China, vol. 1, no. 3, pp. 354–367, 2006.
  47. P. Wedin, “Perturbation bounds in connection with singular value decomposition,” BIT, vol. 12, pp. 99–111, 1972.
  48. T. Cai and A. ZHang, “Rate-optimal perturbation bounds for singular subspaces with applications to high-dimensional statistics,” The Annals of Statistics, vol. 46(1), 2016.
  49. Cambridge University Press, 2019.
  50. T. F. Coleman and A. Pothen, “The null space problem i. complexity,” SIAM Journal on Algebraic Discrete Methods, vol. 7, no. 4, pp. 527–537, 1986.
  51. T. F. Coleman and A. Pothen, “The null space problem ii. algorithms,” SIAM Journal on Algebraic Discrete Methods, vol. 8, no. 4, pp. 544–563, 1987.
  52. F. G. Nievinski, “subtightplot,” 2024.
  53. B. N. Kholodenko, J. F. Hancock, and W. Kolch, “Signalling ballet in space and time,” Nature reviews Molecular cell biology, vol. 11, no. 6, pp. 414–426, 2010.
  54. B. P. Epps and E. M. Krivitzky, “Singular value decomposition of noisy data: noise filtering,” Experiments in Fluids, vol. 60, pp. 1–23, 2019.
  55. R. Schimming, “Conservation laws for Lotka–Volterra models,” Mathematical methods in the applied sciences, vol. 26, no. 17, pp. 1517–1528, 2003.

Summary

We haven't generated a summary for this paper yet.