Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering New Interpretable Conservation Laws as Sparse Invariants (2305.19525v3)

Published 31 May 2023 in math.DS, cs.LG, nlin.SI, physics.class-ph, and physics.flu-dyn

Abstract: Discovering conservation laws for a given dynamical system is important but challenging. In a theorist setup (differential equations and basis functions are both known), we propose the Sparse Invariant Detector (SID), an algorithm that auto-discovers conservation laws from differential equations. Its algorithmic simplicity allows robustness and interpretability of the discovered conserved quantities. We show that SID is able to rediscover known and even discover new conservation laws in a variety of systems. For two examples in fluid mechanics and atmospheric chemistry, SID discovers 14 and 3 conserved quantities, respectively, where only 12 and 2 were previously known to domain experts.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. Z. Liu and M. Tegmark, Machine learning conservation laws from trajectories, Phys. Rev. Lett. 126, 180604 (2021).
  2. Y.-i. Mototake, Interpretable conservation law estimation by deriving the symmetries of dynamics from trained deep neural networks, Physical Review E 103, 033303 (2021).
  3. S. Ha and H. Jeong, Discovering invariants via machine learning, Phys. Rev. Res. 3, L042035 (2021).
  4. M. F. Kasim and Y. H. Lim, Constants of motion network, arXiv preprint arXiv:2208.10387  (2022).
  5. Z. Liu, V. Madhavan, and M. Tegmark, Machine learning conservation laws from differential equations, Phys. Rev. E 106, 045307 (2022).
  6. E. Kaiser, J. N. Kutz, and S. L. Brunton, Discovering conservation laws from data for control, in 2018 IEEE Conference on Decision and Control (CDC) (IEEE, 2018) pp. 6415–6421.
  7. The constant itself can be different for different trajectories.
  8. G. Falkovich and K. R. Sreenivasan, Lessons from hydrodynamic turbulence, Tech. Rep. (Abdus Salam International Centre for Theoretical Physics, 2006).
  9. P. Constantin, On the euler equations of incompressible fluids, Bulletin of the American Mathematical Society 44, 603 (2007).
  10. A. Pumir, E. Bodenschatz, and H. Xu, Tetrahedron deformation and alignment of perceived vorticity and strain in a turbulent flow, Physics of Fluids 25, 035101 (2013).
  11. P. O. Sturm and A. S. Wexler, Conservation laws in a neural network architecture: enforcing the atom balance of a julia-based photochemical model (v0.2.0), Geoscientific Model Development 15, 3417 (2022).
  12. P. O. Sturm and A. S. Wexler, A mass- and energy-conserving framework for using machine learning to speed computations: a photochemistry example, Geoscientific Model Development 13, 4435 (2020).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com