Papers
Topics
Authors
Recent
2000 character limit reached

Heisenberg-Limited Quantum Metrology without Ancilla (2403.04585v2)

Published 7 Mar 2024 in quant-ph

Abstract: Extensive research has been dedicated to the asymptotic theory of quantum metrology, where the goal is to determine the ultimate precision limit of quantum channel estimation when many accesses to the channel are allowed. The ultimate limit has been well established, but in general noiseless and controllable ancilla is required for attaining it. Little is known about the metrological performance without noiseless ancilla, which is more relevant in practical circumstances. In this work, we present a novel theoretical framework to address this problem, bridging quantum metrology and the asymptotic theory of quantum channels. Leveraging this framework, we prove sufficient conditions for achieving the Heisenberg limit with repeated applications of the channel to estimate, both with and without applying interleaved unitary control operations. For the latter case, we design an algorithm to identify explicitly the control operation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: Beating the standard quantum limit, Science 306, 1330 (2004), https://www.science.org/doi/pdf/10.1126/science.1104149 .
  2. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Metrology, Phys. Rev. Lett. 96, 010401 (2006).
  3. C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
  4. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  5. V. Bužek, R. Derka, and S. Massar, Optimal Quantum Clocks, Phys. Rev. Lett. 82, 2207 (1999).
  6. G. Brida, M. Genovese, and I. Ruo Berchera, Experimental realization of sub-shot-noise quantum imaging, Nat. Photonics 4, 227 (2010).
  7. H. Yuan and C.-H. F. Fung, Optimal feedback scheme and universal time scaling for hamiltonian parameter estimation, Phys. Rev. Lett. 115, 110401 (2015).
  8. R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, The elusive heisenberg limit in quantum-enhanced metrology, Nat. Commun. 3, 1063 (2012).
  9. A. Fujiwara and H. Imai, A fibre bundle over manifolds of quantum channels and its application to quantum statistics, J. Phys. A 41, 255304 (2008).
  10. B. M. Escher, R. L. de Matos Filho, and L. Davidovich, General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology, Nat. Phys. 7, 406 (2011).
  11. J. Kołodyński and R. Demkowicz-Dobrzański, Efficient tools for quantum metrology with uncorrelated noise, New J. Phys. 15, 073043 (2013).
  12. R. Demkowicz-Dobrzański and L. Maccone, Using entanglement against noise in quantum metrology, Phys. Rev. Lett. 113, 250801 (2014).
  13. S. Zhou and L. Jiang, Asymptotic theory of quantum channel estimation, PRX Quantum 2, 010343 (2021).
  14. R. Demkowicz-Dobrzański, J. Czajkowski, and P. Sekatski, Adaptive Quantum Metrology under General Markovian Noise, Phys. Rev. X 7, 041009 (2017).
  15. S. I. Knysh, E. H. Chen, and G. A. Durkin, True limits to precision via unique quantum probe (2014), arXiv:1402.0495 [quant-ph] .
  16. Y. Peng and H. Fan, Achieving the heisenberg limit under general markovian noise using quantum error correction without ancilla, Quantum Inf. Process. 19, 10.1007/s11128-020-02749-8 (2020).
  17. S. Zhou, A. G. Manes, and L. Jiang, Achieving metrological limits using ancilla-free quantum error-correcting codes (2023), arXiv:2303.00881 [quant-ph] .
  18. D. E. Evans and R. Høegh-Krohn, Spectral properties of positive maps on c*-algebras, J. Lond. Math. Soc. s2-17, 345 (1978).
  19. M. M. Wolf, Quantum channels and operations-guided tour (2012).
  20. C. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976).
  21. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, Vol. 1 (Springer Science & Business Media, Berlin, 2011).
  22. S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72, 3439 (1994).
  23. D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-free subspaces for quantum computation, Phys. Rev. Lett. 81, 2594 (1998).
  24. S. Alipour, M. Mehboudi, and A. T. Rezakhani, Quantum metrology in open systems: Dissipative cramér-rao bound, Phys. Rev. Lett. 112, 120405 (2014).
  25. J. Watrous, The Theory of Quantum Information (Cambridge University Press, Cambridge, England, 2018).
  26. C. Jordan, Essai sur la géométrie à n𝑛nitalic_n dimensions, Bull. Soc. Math. France 3, 103 (1875).
  27. Å. Björck and G. H. Golub, Numerical methods for computing angles between linear subspaces, Math. Comput. 27, 579 (1973), full publication date: Jul., 1973.
  28. A. Galántai and C. J. Hegedűs, Jordan’s principal angles in complex vector spaces, Numer. Linear Algebra Appl. 13, 589 (2006), https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.491 .
  29. J. C. Gower and G. B. Dijksterhuis, Procrustes Problems (Oxford University Press, 2004).
  30. E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phys. Rev. A 55, 900 (1997).
  31. R. Ozeri, Heisenberg limited metrology using quantum error-correction codes (2013), arXiv:1310.3432 [quant-ph] .
  32. D. Šafránek, Discontinuities of the quantum fisher information and the bures metric, Phys. Rev. A 95, 052320 (2017).
  33. S. Zhou and L. Jiang, An exact correspondence between the quantum fisher information and the bures metric (2019), arXiv:1910.08473 [quant-ph] .
  34. Y. Ye and X.-M. Lu, Quantum cramér-rao bound for quantum statistical models with parameter-dependent rank, Phys. Rev. A 106, 022429 (2022).
  35. O. E. Barndorff-Nielsen and R. D. Gill, Fisher information in quantum statistics, J. Phys. A 33, 4481 (2000).
  36. M. Hayashi, Comparison between the cramer-rao and the mini-max approaches in quantum channel estimation, Commun. Math. Phys. 304, 689 (2011).
  37. Y. Yang, G. Chiribella, and M. Hayashi, Attaining the ultimate precision limit in quantum state estimation, Commun. Math. Phys. 368, 223 (2019).
  38. F. R. F. Pereira, S. Mancini, and G. G. La Guardia, Stabilizer codes for open quantum systems, Sci. Rep. 13, 10540 (2023).
  39. A. Altherr and Y. Yang, Quantum metrology for non-markovian processes, Phys. Rev. Lett. 127, 060501 (2021).
  40. S. Zhou, Limits of noisy quantum metrology with restricted quantum controls (2024), arXiv:2402.18765 [quant-ph] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.