Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 416 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Search for long-lived heavy neutrinos in the decays of B mesons produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV (2403.04584v2)

Published 7 Mar 2024 in hep-ex

Abstract: A search for long-lived heavy neutrinos (N) in the decays of B mesons produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb${-1}$ collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 $\lt$ $m_\mathrm{N}$ $\lt$ 3 GeV and decay lengths in the range 10${-2}$ $\lt$ $c\tau_\mathrm{N}$ $\lt$ 10${4}$ mm, where $\tau_\mathrm{N}$ is the N proper mean lifetime. Signal events are defined by the signature B $\to$ $\ell_\mathrm{B}$NX; N $\to$ $\ell{\pm} \pi{\mp}$, where the leptons $\ell_\mathrm{B}$ and $\ell$ can be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of the $\ell{\pm} \pi{\mp}$ invariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, $\vert V_\mathrm{N}\vert2$, and on $c\tau$ are obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit $\vert V_\mathrm{N}\vert2$ $\lt$ 2.0 $\times$ 10${-5}$ is obtained at $m_\mathrm{N}$ = 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on $\vert V_\mathrm{N}\vert2$ for masses 1 $\lt$ $m_\mathrm{N}$ $\lt$ 1.7 GeV are the most stringent from a collider experiment to date.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. S. Bilenky, “Neutrino oscillations: From a historical perspective to the present status”, Nucl. Phys. B 908 (2016) 2, 10.1016/j.nuclphysb.2016.01.025, arXiv:1602.00170.
  2. J. Silk et al., “Particle dark matter: observations, models and searches”. Cambridge Univ. Press, Cambridge, 2010. 10.1017/CBO9780511770739, ISBN 978-1-107-65392-4.
  3. G. R. Farrar and M. E. Shaposhnikov, “Baryon asymmetry of the universe in the standard electroweak theory”, Phys. Rev. D 50 (1994) 774, 10.1103/PhysRevD.50.774, arXiv:hep-ph/9305275.
  4. T. Asaka, S. Blanchet, and M. Shaposhnikov, “The nuMSM, dark matter and neutrino masses”, Phys. Lett. B 631 (2005) 151, 10.1016/j.physletb.2005.09.070, arXiv:hep-ph/0503065.
  5. T. Asaka and M. Shaposhnikov, “The ν𝜈\nuitalic_νMSM, dark matter and baryon asymmetry of the universe”, Phys. Lett. B 620 (2005) 17, 10.1016/j.physletb.2005.06.020, arXiv:hep-ph/0505013.
  6. S. Dodelson and L. M. Widrow, “Sterile-neutrinos as dark matter”, Phys. Rev. Lett. 72 (1994) 17, 10.1103/PhysRevLett.72.17, arXiv:hep-ph/9303287.
  7. M. Fukugita and T. Yanagida, “Baryogenesis without grand unification”, Phys. Lett. B 174 (1986) 45, 10.1016/0370-2693(86)91126-3.
  8. P. Minkowski, “μ→e⁢γ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ at a rate of one out of 109superscript10910^{9}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT muon decays?”, Phys. Lett. B 67 (1977) 421, 10.1016/0370-2693(77)90435-X.
  9. K. Bondarenko, A. Boyarsky, D. Gorbunov, and O. Ruchayskiy, “Phenomenology of GeV-scale heavy neutral leptons”, JHEP 11 (2018) 032, 10.1007/JHEP11(2018)032, arXiv:1805.08567.
  10. CHARM Collaboration, “A search for decays of heavy neutrinos in the mass range 0.5 - 2.8 GeV”, Phys. Lett. B 166 (1986) 473, 10.1016/0370-2693(86)91601-1.
  11. NuTeV-E815 Collaboration, “Search for neutral heavy leptons in a high-energy neutrino beam”, Phys. Rev. Lett. 83 (1999) 4943, 10.1103/PhysRevLett.83.4943, arXiv:hep-ex/9908011.
  12. R. Barouki, G. Marocco, and S. Sarkar, “Blast from the past II: Constraints on heavy neutral leptons from the BEBC WA66 beam dump experiment”, SciPost Phys. 13 (2022) 118, 10.21468/SciPostPhys.13.5.118, arXiv:2208.00416.
  13. WA66 Collaboration, “Search for heavy neutrino decays in the BEBC beam dump experiment”, Phys. Lett. B 160 (1985) 207, 10.1016/0370-2693(85)91493-5.
  14. Belle Collaboration, “Search for heavy neutrinos at Belle”, Phys. Rev. D 87 (2013) 071102, 10.1103/PhysRevD.87.071102, arXiv:1301.1105. [Erratum: Phys. Rev. D 95 (2017) 099903].
  15. BABAR Collaboration, “Search for heavy neutral leptons using tau lepton decays at BABAR”, Phys. Rev. D 107 (2023) 052009, 10.1103/PhysRevD.107.052009, arXiv:2207.09575.
  16. ATLAS Collaboration, “Search for heavy neutral leptons in decays of W𝑊Witalic_W bosons produced in 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collisions using prompt and displaced signatures with the ATLAS detector”, JHEP 10 (2019) 265, 10.1007/JHEP10(2019)265, arXiv:1905.09787.
  17. ATLAS Collaboration, “Search for heavy neutral leptons in decays of W bosons using a dilepton displaced vertex in s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13  TeV pp collisions with the ATLAS detector”, Phys. Rev. Lett. 131 (2023) 061803, 10.1103/PhysRevLett.131.061803, arXiv:2204.11988.
  18. CMS Collaboration, “Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. Lett. 120 (2018) 221801, 10.1103/PhysRevLett.120.221801, arXiv:1802.02965.
  19. CMS Collaboration, “Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 01 (2019) 122, 10.1007/JHEP01(2019)122, arXiv:1806.10905.
  20. CMS Collaboration, “Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two τ𝜏\tauitalic_τ leptons and two jets in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 03 (2019) 170, 10.1007/JHEP03(2019)170, arXiv:1811.00806.
  21. CMS Collaboration, “Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at ss\sqrt{\mathrm{s}}square-root start_ARG roman_s end_ARG =13 TeV”, JHEP 07 (2022) 081, 10.1007/JHEP07(2022)081, arXiv:2201.05578.
  22. CMS Collaboration, “Search for long-lived heavy neutral leptons with lepton flavour conserving or violating decays to a jet and a charged lepton”, 2023. arXiv:2312.07484.
  23. CMS Collaboration, “Search for long-lived heavy neutral leptons decaying in the CMS muon detectors in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, 2, 2024. arXiv:2402.18658.
  24. LHCb Collaboration, “Search for Majorana neutrinos in B−→π+⁢μ−⁢μ−→superscript𝐵superscript𝜋superscript𝜇superscript𝜇B^{-}\to\pi^{+}\mu^{-}\mu^{-}italic_B start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT decays”, Phys. Rev. Lett. 112 (2014) 131802, 10.1103/PhysRevLett.112.131802, arXiv:1401.5361.
  25. LHCb Collaboration, “Search for heavy neutral leptons in W+→μ+⁢μ±⁢jet→superscript𝑊superscript𝜇superscript𝜇plus-or-minusjetW^{+}\to\mu^{+}\mu^{\pm}\text{jet}italic_W start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT jet decays”, Eur. Phys. J. C 81 (2021) 248, 10.1140/epjc/s10052-021-08973-5, arXiv:2011.05263.
  26. CMS Collaboration, “Test of lepton flavor universality in B±plus-or-minus{}^{\pm}start_FLOATSUPERSCRIPT ± end_FLOATSUPERSCRIPT →→\to→ Kμ+±⁢μ−superscriptsuperscript𝜇plus-or-minussuperscript𝜇{}^{\pm}\mu^{+}\mu^{-}start_FLOATSUPERSCRIPT ± end_FLOATSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT and B±plus-or-minus{}^{\pm}start_FLOATSUPERSCRIPT ± end_FLOATSUPERSCRIPT →→\to→ K±plus-or-minus{}^{\pm}start_FLOATSUPERSCRIPT ± end_FLOATSUPERSCRIPTe+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPTe−{}^{-}start_FLOATSUPERSCRIPT - end_FLOATSUPERSCRIPT decays in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, 2024. arXiv:2401.07090.
  27. F. F. Deppisch, P. S. Bhupal Dev, and A. Pilaftsis, “Neutrinos and Collider Physics”, New J. Phys. 17 (2015) 075019, 10.1088/1367-2630/17/7/075019, arXiv:1502.06541.
  28. Particle Data Group, “Review of particle physics”, PTEP 2022 (2022) 083C01, 10.1093/ptep/ptac097.
  29. M. Drewes, “The phenomenology of right handed neutrinos”, Int. J. Mod. Phys. E 22 (2013) 1330019, 10.1142/S0218301313300191, arXiv:1303.6912.
  30. P. Hernández, J. Jones-Pérez, and O. Suarez-Navarro, “Majorana vs pseudo-Dirac neutrinos at the ILC”, Eur. Phys. J. C 79 (2019) 220, 10.1140/epjc/s10052-019-6728-1, arXiv:1810.07210.
  31. HEPData record for this analysis, 2024. 10.17182/hepdata.147308.
  32. CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
  33. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  34. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
  35. CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at s=13⁢\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.
  36. LHCb Collaboration, “Measurement of the Bc−superscriptsubscript𝐵𝑐B_{c}^{-}italic_B start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT meson production fraction and asymmetry in 7 and 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collisions”, Phys. Rev. D 100 (2019) 112006, 10.1103/PhysRevD.100.112006, arXiv:1910.13404.
  37. T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
  38. CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
  39. NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, 10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.
  40. D. J. Lange, “The EvtGen particle decay simulation package”, Nucl. Instrum. Meth. A 462 (2001) 152, 10.1016/S0168-9002(01)00089-4.
  41. C.-H. Chang, J.-X. Wang, and X.-G. Wu, “BCVEGPY2.0: A Upgrade version of the generator BCVEGPY with an addendum about hadroproduction of the P-wave B(c) states”, Comput. Phys. Commun. 174 (2006) 241, 10.1016/j.cpc.2005.09.008, arXiv:hep-ph/0504017.
  42. GEANT4 Collaboration, “\GEANTfour—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
  43. CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
  44. CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
  45. CMS Collaboration, “CMS tracking performance results from early LHC operation”, Eur. Phys. J. C 70 (2010) 1165, 10.1140/epjc/s10052-010-1491-3, arXiv:1007.1988.
  46. CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, 10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.
  47. K. Prokofiev and T. Speer, “A kinematic and a decay chain reconstruction library”, in 14th International Conference on Computing in High-Energy and Nuclear Physics, p. 411. 2005.
  48. P. Baldi et al., “Parameterized neural networks for high-energy physics”, Eur. Phys. J. C 76 (2016) 235, 10.1140/epjc/s10052-016-4099-4, arXiv:1601.07913.
  49. K. Fukushima, “Visual feature extraction by a multilayered network of analog threshold elements”, IEEE Transactions on Systems Science and Cybernetics 5 (1969) 322, 10.1109/TSSC.1969.300225.
  50. F. Chollet et al., “Keras”. https://keras.io, 2015.
  51. M. Abadi et al., “TensorFlow: A system for large-scale machine learning”, in Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, p. 265. USENIX Association, USA, 2016. arXiv:1605.08695.
  52. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, 2014. arXiv:1412.6980.
  53. F. Pedregosa et al., “Scikit-learn: Machine learning in Python”, J. Mach. Learn. Res. 12 (2011) 2825, arXiv:1201.0490.
  54. CMS Collaboration, “Measurement of the total and differential inclusive B+superscript𝐵B^{+}italic_B start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT hadron cross sections in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 771 (2017) 435, 10.1016/j.physletb.2017.05.074, arXiv:1609.00873.
  55. M. J. Oreglia, “A study of the reactions ψ′→γ⁢γ⁢ψ→superscript𝜓′𝛾𝛾𝜓\psi^{\prime}\to\gamma\gamma\psiitalic_ψ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → italic_γ italic_γ italic_ψ”. PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236.
  56. J. E. Gaiser, “Charmonium spectroscopy from radiative decays of the J/ψ𝜓\psiitalic_ψ and ψ′superscript𝜓′\psi^{\prime}italic_ψ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT”. PhD thesis, Stanford University, 1982. SLAC Report SLAC-R-255.
  57. P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies, “Handling uncertainties in background shapes: the discrete profiling method”, JINST 10 (2015) P04015, 10.1088/1748-0221/10/04/P04015, arXiv:1408.6865.
  58. R. A. Fisher, “On the mathematical foundations of theoretical statistics”, Phil. Trans. Roy. Soc. Lond. A 222 (1922) 309, 10.1098/rsta.1922.0009.
  59. S. S. Wilks, “The large-sample distribution of the likelihood ratio for testing composite hypotheses”, Annals Math. Statist. 9 (1938) 60, 10.1214/aoms/1177732360.
  60. A. L. Read, “Presentation of search results: The C⁢Ls𝐶subscript𝐿𝑠CL_{s}italic_C italic_L start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT technique”, J. Phys. G 28 (2002) 2693, 10.1088/0954-3899/28/10/313.
  61. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, 10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum: Eur. Phys. J. C 73 (2013) 2501].
  62. M. Drewes, J. Klarić, and J. López-Pavón, “New benchmark models for heavy neutral lepton searches”, Eur. Phys. J. C 82 (2022) 1176, 10.1140/epjc/s10052-022-11100-7, arXiv:2207.02742.
  63. B. Shuve and M. E. Peskin, “Revision of the LHCb limit on Majorana neutrinos”, Phys. Rev. D 94 (2016) 113007, 10.1103/PhysRevD.94.113007, arXiv:1607.04258.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 6 posts and received 23 likes.