Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Children Age Group Detection based on Human-Computer Interaction and Time Series Analysis (2403.04574v1)

Published 7 Mar 2024 in cs.HC

Abstract: This article proposes a novel Children-Computer Interaction (CCI) approach for the task of age group detection. This approach focuses on the automatic analysis of the time series generated from the interaction of the children with mobile devices. In particular, we extract a set of 25 time series related to spatial, pressure, and kinematic information of the children interaction while colouring a tree through a pen stylus tablet, a specific test from the large-scale public ChildCIdb database. A complete analysis of the proposed approach is carried out using different time series selection techniques to choose the most discriminative ones for the age group detection task: i) a statistical analysis, and ii) an automatic algorithm called Sequential Forward Search (SFS). In addition, different classification algorithms such as Dynamic Time Warping Barycenter Averaging (DBA) and Hidden Markov Models (HMM) are studied. Accuracy results over 85% are achieved, outperforming previous approaches in the literature and in more challenging age group conditions. Finally, the approach presented in this study can benefit many children-related applications, for example, towards an age-appropriate environment with the technology.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. J. Radesky, H. Weeks, R. Ball, A. Schaller, S. Yeo, J. Durnez, M. Tamayo-Rios, M. Epstein, H. Kirkorian, S. Coyne, and R. Barr, “Young Children’s Use of Smartphones and Tablets,” Pediatrics, vol. 146, 2020.
  2. H. K. Kabali, M. M. Irigoyen, R. Nunez-Davis, J. G. Budacki, S. H. Mohanty, K. P. Leister, and J. Bonner, Robert L., “Exposure and Use of Mobile Media Devices by Young Children,” Pediatrics, vol. 136, no. 6, pp. 1044–1050, 12 2015.
  3. A. Lawrence and D. E. Choe, “Mobile Media and Young Children’s Cognitive Skills: A Review,” Academic Pediatrics, vol. 21, no. 6, pp. 996–1000, 2021.
  4. B. Huber, J. Tarasuik, M. N. Antoniou, C. Garrett, S. J. Bowe, and J. Kaufman, “Young Children’s Transfer of Learning from a Touchscreen Device,” Computers in Human Behavior, vol. 56, pp. 56–64, 2016.
  5. R. A. Dore, M. Shirilla, E. Hopkins, M. Collins, M. Scott, J. Schatz, J. Lawson-Adams, T. Valladares, L. Foster, H. Puttre, T. S. Toub, E. Hadley, R. M. Golinkoff, D. Dickinson, and K. Hirsh-Pasek, “Education in the App Store: Using a Mobile Game to Support U.S. Preschoolers’ Vocabulary Learning,” Journal of Children and Media, vol. 13, no. 4, pp. 452–471, 2019.
  6. B. Huber, M. Yeates, D. Meyer, L. Fleckhammer, and J. Kaufman, “The Effects of Screen Media Content on Young Children’s Executive Functioning,” Journal of Experimental Child Psychology, vol. 170, pp. 72–85, 2018.
  7. E. Bozzola, G. Spina, M. Ruggiero, L. Memo, R. Agostiniani, M. Bozzola, G. Corsello, and A. Villani, “Media Devices in Pre-School Dhildren: The Recommendations of the Italian Pediatric Society,” Italian Journal of Pediatrics, vol. 44, no. 1, p. 69, 2018.
  8. H.-y. A. Chiang and C.-H. Liu, “Exploration of the Associations of Touch-Screen Tablet Computer Usage and Musculoskeletal Discomfort,” Work, vol. 53, pp. 917–925, 2016, 4.
  9. J. Radesky, M. Silverstein, B. Zuckerman, and D. Christakis, “Infant Self-Regulation and Early Childhood Media Exposure,” Pediatrics, vol. 133, 2014.
  10. E. Cespedes, M. Gillman, K. Kleinman, S. Rifas-Shiman, S. Redline, and E. Taveras, “Television Viewing, Bedroom Television, and Sleep Duration From Infancy to Mid-Childhood,” Pediatrics, vol. 133, 2014.
  11. S. Csibi, M. D. Griffiths, Z. Demetrovics, and A. Szabo, “Analysis of Problematic Smartphone Use Across Different Age Groups within the ’Components Model of Addiction’,” International Journal of Mental Health and Addiction, vol. 19, no. 3, pp. 616–631, 2021.
  12. M. Samaha and N. S. Hawi, “Relationships Among Smartphone Addiction, Stress, Academic Performance, and Satisfaction with Life,” Computers in Human Behavior, vol. 57, pp. 321–325, 2016.
  13. H.-h. Kim, P. Taele, S. Valentine, E. McTigue, and T. Hammond, “KimCHI: A Sketch-Based Developmental Skill Classifier to Enhance Pen-Driven Educational Interfaces for Children,” in Proc. International Symposium on Sketch-Based Interfaces and Modeling, 2013, p. 33–42.
  14. R.-D. Vatavu, L. Anthony, and Q. Brown, “Child or Adult? Inferring Smartphone Users’ Age Group from Touch Measurements Alone,” in Proc. Conference on Human-Computer Interaction, 2015.
  15. E. Davarci, B. Soysal, I. Erguler, S. O. Aydin, O. Dincer, and E. Anarim, “Age Group Detection Using Smartphone Motion Sensors,” in Proc. European Signal Processing Conference (EUSIPCO), 2017, pp. 2201–2205.
  16. X. Li, S. Malebary, X. Qu, X. Ji, Y. Cheng, and W. Xu, “ICare: Automatic and User-Friendly Child Identification on Smartphones,” in Proc. 19th International Workshop on Mobile Computing Systems & Applications, 2018, p. 43–48.
  17. T. Nguyen, A. Roy, and N. Memon, “Kid on the Phone! Toward Automatic Detection of Children on Mobile Devices,” Computers & Security, vol. 84, pp. 334–348, 2019.
  18. A. Acien, A. Morales, J. Fierrez, R. Vera-Rodriguez, and J. Hernandez-Ortega, “Active Detection of Age Groups Based on Touch Interaction,” IET Biometrics, vol. 8, no. 1, pp. 101–108, 2019.
  19. R. Vera-Rodriguez, R. Tolosana, J. Hernandez-Ortega, A. Acien, A. Morales, J. Fierrez, and J. Ortega-Garcia, “Modeling the Complexity of Signature and Touch-Screen Biometrics using the Lognormality Principle,” in The Lognormality Principle and its Applications in e-Security, e-Learning and e-Health, 2020, pp. 65–86.
  20. R. Tolosana, J. C. Ruiz-Garcia, R. Vera-Rodriguez, J. Herreros-Rodriguez, S. Romero-Tapiador, A. Morales, and J. Fierrez, “Child-Computer Interaction with Mobile Devices: Recent Works, New Dataset, and Age Detection,” IEEE Transactions on Emerging Topics in Computing, pp. 1–1, 2022.
  21. J. C. Ruiz-Garcia, R. Tolosana, R. Vera-Rodriguez, J. Fierrez, and J. Herreros-Rodriguez, “ChildCI Framework: Analysis of Motor and Cognitive Development in Children-Computer Interaction for Age Detection,” 2022. [Online]. Available: https://arxiv.org/abs/2204.04236
  22. M. Martinez-Diaz, J. Fierrez, R. P. Krish, and J. Galbally, “Mobile Signature Verification: Feature Robustness and Performance Comparison,” IET Biometrics, vol. 3, no. 4, pp. 267–277, 2014.
  23. R. Tolosana, P. Delgado-Santos, A. Perez-Uribe, R. Vera-Rodriguez, J. Fierrez, and A. Morales, “DeepWriteSYN: On-Line Handwriting Synthesis via Deep Short-Term Representations,” in Proc. 35th AAAI Conference on Artificial Intelligence, 2021.
  24. R. Tolosana and et al., “SVC-onGoing: Signature Verification Competition,” Pattern Recognition, 2022.
  25. R. Tolosana, R. Vera-Rodriguez, J. Ortega-Garcia, and J. Fierrez, “Preprocessing and Feature Selection for Improved Sensor Interoperability in Online Biometric Signature Verification,” IEEE Access, vol. 3, pp. 478–489, 2015.
  26. F. Petitjean, A. Ketterlin, and P. Gançarski, “A Global Averaging Method for Dynamic Time Warping, with Applications to Clustering,” Pattern Recognition, vol. 44, no. 3, pp. 678–693, 2011.
  27. M. S. Fahad, A. Deepak, G. Pradhan, and J. Yadav, “DNN-HMM-Based Speaker-Adaptive Emotion Recognition Using MFCC and Epoch-Based Features,” Circuits, Systems, and Signal Processing, vol. 40, no. 1, pp. 466–489, 2021.
  28. R. Tolosana, R. Vera-Rodriguez, J. Ortega-Garcia, and J. Fierrez, “Update Strategies for HMM-Based Dynamic Signature Biometric Systems,” in Proc. IEEE International Workshop on Information Forensics and Security (WIFS), 2015.
  29. R. Tolosana, R. Vera-Rodriguez, J. Fierrez, and J. Ortega-Garcia, “Reducing the Template Ageing Effect in On-Line Signature Biometrics,” IET Biometrics, vol. 8, no. 6, pp. 422–430, 2019.
  30. P. Delgado-Santos, G. Stragapede, R. Tolosana, R. Guest, F. Deravi, and R. Vera-Rodriguez, “A Survey of Privacy Vulnerabilities of Mobile Device Sensors,” ACM Comput. Surv., vol. 54, no. 11, 2022.
  31. P. Melzi, C. Rathgeb, R. Tolosana, R. Vera-Rodriguez, and C. Busch, “An overview of privacy-enhancing technologies in biometric recognition,” 2022. [Online]. Available: https://arxiv.org/abs/2206.10465
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets