A generalization of quantum Lakshmibai-Seshadri paths for arbitrary weights
Abstract: We construct an injective weight-preserving map (called the forgetful map) from the set of all admissible subsets in the quantum alcove model associated to an arbitrary weight. The image of this forgetful map can be explicitly described by introducing the notion of "interpolated quantum Lakshmibai-Seshadri (QLS for short) paths", which can be thought of as a generalization of quantum Lakshmibai-Seshadri paths. As an application, we reformulate, in terms of interpolated QLS paths, an identity of Chevalley type for the graded characters of Demazure submodules of a level-zero extremal weight module over a quantum affine algebra, which is a representation-theoretic analog of the Chevalley formula for the torus-equivariant $K$-group of a semi-infinite flag manifold.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.