Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Wavepacket interference of two photons through a beam splitter: from temporal entanglement to wavepacket shaping (2403.04432v3)

Published 7 Mar 2024 in quant-ph

Abstract: Quantum interferences based on beam splitting are widely used for entanglement. However, the quantitative measurement of the entanglement in terms of temporal modes and wavepacket shaping facilitated by this entanglement remain unexplored. Here we analytically study the interference of two photons with different temporal shapes through a beam splitter (BS), then propose its application in temporal entanglement and shaping of photons. The temporal entanglement described by Von Neumann entropy is determined by the splitting ratio of BS and temporal indistinguishability of input photons. We found that maximum mode entanglement can be achieved with a 50/50 BS configuration, enabling the generation of a Bell state encoded in temporal modes, independent of the exact form of the input photons. Then, detecting one of the entangled photons at a specific time enables the probabilistic shaping of the other photon. This process can shape the exponentially decaying (ED) wavepacket into the ED sine shapes, which can be further shaped into Gaussian shapes with fidelity exceeding 99\%. The temporal entanglement and shaping of photons based on interference may solve the shape mismatch issues in large-scale optical quantum networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
  2. E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).
  3. S. Laibacher and V. Tamma, Phys. Rev. A 98, 053829 (2018).
  4. V. Tamma and S. Laibacher, Phys. Rev. Lett. 114, 243601 (2015).
  5. E. Rephaeli, J.-T. Shen, and S. Fan, Phys. Rev. A 82, 033804 (2010).
  6. E. Rephaeli and S. Fan, Phys. Rev. Lett. 108, 143602 (2012), publisher: American Physical Society.
  7. M. Cotrufo and A. Alù, Optica 6, 799 (2019).
  8. M. Heuck, K. Jacobs, and D. R. Englund, Phys. Rev. Lett. 124, 160501 (2020).
  9. Z. Tian, P. Zhang, and X.-W. Chen, Phys. Rev. Appl. 15, 054043 (2021).
  10. M. F. Yanik and S. Fan, Phys. Rev. Lett. 93, 173903 (2004).
  11. L. Yuan, M. Xiao, and S. Fan, Phys. Rev. B 94, 140303(R) (2016).
  12. S.-Y. Baek, O. Kwon, and Y.-H. Kim, Phys. Rev. A 77, 013829 (2008).
  13. D. Sych, V. Averchenko, and G. Leuchs, Phys. Rev. A 96, 053847 (2017).
  14. C. K. Law, I. A. Walmsley, and J. H. Eberly, Phys. Rev. Lett. 84, 5304 (2000).
  15. R. Johne and A. Fiore, Phys. Rev. A 84, 053850 (2011).
  16. P. P. Rohde, T. C. Ralph, and M. A. Nielsen, Phys. Rev. A 72, 052332 (2005).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube