Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dual-path Frequency Discriminators for Few-shot Anomaly Detection

Published 7 Mar 2024 in cs.CV | (2403.04151v4)

Abstract: Few-shot anomaly detection (FSAD) plays a crucial role in industrial manufacturing. However, existing FSAD methods encounter difficulties leveraging a limited number of normal samples, frequently failing to detect and locate inconspicuous anomalies in the spatial domain. We have further discovered that these subtle anomalies would be more noticeable in the frequency domain. In this paper, we propose a Dual-Path Frequency Discriminators (DFD) network from a frequency perspective to tackle these issues. The original spatial images are transformed into multi-frequency images, making them more conducive to the tailored discriminators in detecting anomalies. Additionally, the discriminators learn a joint representation with forms of pseudo-anomalies. Extensive experiments conducted on MVTec AD and VisA benchmarks demonstrate that our DFD surpasses current state-of-the-art methods. The code is available at \url{https://github.com/yuhbai/DFD}.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.