Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

The elementary theory of the 2-category of small categories (2403.03647v2)

Published 6 Mar 2024 in math.CT and math.LO

Abstract: We give an elementary description of $2$-categories $\mathbf{Cat}\left(\mathcal{E}\right)$ of internal categories, functors and natural transformations, where $\mathcal{E}$ is a category modelling Lawvere's elementary theory of the category of sets (ETCS). This extends Bourke's characterisation of $2$-categories $\mathbf{Cat}\left(\mathcal{E}\right)$ where $\mathcal{E}$ has pullbacks to take account for the extra properties in ETCS, and Lawvere's characterisation of the (one dimensional) category of small categories to take account of the two-dimensional structure. Important two-dimensional concepts which we introduce include $2$-well-pointedness, full-subobject classifiers, and the categorified axiom of choice. Along the way, we show how generating families (resp. orthogonal factorisation systems) on $\mathcal{E}$ give rise to generating families (resp. orthogonal factorisation systems) on $\mathbf{Cat}\left(\mathcal{E}\right)_{1}$, results which we believe are of independent interest.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. Categories of sketched structures. Cahiers de topologie et geometrie differentielle, 13(2):104–214, 1972.
  2. Two-dimensional regularity and exactness. Journal of Pure and Applied Algebra, 218(7):1346–1371, 2014.
  3. Gabriella Böhm. The gray monoidal product of double categories. Applied Categorical Structures, 28(3):477–515, 2020.
  4. Francis Borceux. Handbook of categorical algebra: volume 1, Basic category theory, volume 1. Cambridge University Press, 1994.
  5. Aldridge K Bousfield. Constructions of factorization systems in categories. Journal of Pure and Applied Algebra, 9(2-3):207–220, 1977.
  6. John Bourke. Codescent objects in 2-dimensional universal algebra. PhD thesis, University of Sydney, 2010.
  7. Introduction to extensive and distributive categories. Journal of Pure and Applied Algebra, 84(2):145–158, 1993.
  8. Brian Day. A reflection theorem for closed categories. Journal of pure and applied algebra, 2(1):1–11, 1972.
  9. Brian Day. On adjoint-functor factorisation. In Category Seminar: Proceedings Sydney Category Theory Seminar 1972/1973, pages 1–19. Springer, 2006.
  10. Radu Diaconescu. Axiom of choice and complementation. Proceedings of the American Mathematical Society, 51(1):176–178, 1975.
  11. Charles Ehresmann. Catégories topologiques et catégories différentiables. Librairie universitaire, 1959.
  12. Charles Ehresmann. Catégories structurées. In Annales scientifiques de l’École Normale Supérieure, volume 80, pages 349–426, 1963.
  13. Model structures for homotopy of internal categories. Theory Appl. Categ, 15(3):66–94, 2005.
  14. Jonas Frey. Characterizing partitioned assemblies and realizability toposes. Journal of Pure and Applied Algebra, 223(5):2000–2014, 2019.
  15. Categories, allegories. Elsevier, 1990.
  16. Simplicial homotopy theory. Springer Science & Business Media, 2009.
  17. Alexander Grothendieck. Techniques de construction et théoremes d’existence en géométrie algébrique. iv. les schémas de hilbert. Séminaire Bourbaki, 6(221):249–276, 1960.
  18. 2222-categories of categories, discrete opfibration classifiers and the axiom of replacement. In preparation.
  19. Algebraic set theory, volume 220. Cambridge University Press, 1995.
  20. Peter T Johnstone. Sketches of an Elephant: A Topos Theory Compendium, Volume 1. Oxford University Press, 2002.
  21. Peter T Johnstone. Topos theory. Courier Corporation, 2014.
  22. Strong stacks and classifying spaces. In Category Theory: Proceedings of the International Conference held in Como, Italy, July 22–28, 1990, pages 213–236. Springer, 2006.
  23. Algebraic theories in toposes. In Indexed Categories and Their Applications. Springer, 1978.
  24. 2-dimensional categories. Oxford University Press, USA, 2021.
  25. Anders Kock. Synthetic differential geometry, volume 333. Cambridge University Press, 2006.
  26. Stephen Lack. A 2-categories companion. In Towards higher categories, pages 105–191. Springer, 2009.
  27. Elaine Landry. Categories for the working philosopher. Oxford University Press, 2017.
  28. F William Lawvere. Alexander Grothendieck and the concept of space. Address, CT15 Aveiro 2016.
  29. F William Lawvere. Functorial semantics of algebraic theories. Proceedings of the National Academy of Sciences, 50(5):869–872, 1963.
  30. F William Lawvere. An elementary theory of the category of sets. Proceedings of the national academy of sciences, 52(6):1506–1511, 1964.
  31. F William Lawvere. The category of categories as a foundation for mathematics. In Proceedings of the Conference on Categorical Algebra: La Jolla 1965, pages 1–20. Springer, 1966.
  32. Tom Leinster. Rethinking set theory. The American Mathematical Monthly, 121(5):403–415, 2014.
  33. An elementary theory of the category of sets (long version) with commentary. Reprints in Theory and Applications of Categories, 11:1–35, 2005.
  34. Jacob Lurie. Higher topos theory. Princeton University Press, 2009.
  35. Michael Makkai. Avoiding the axiom of choice in general category theory. Journal of pure and applied algebra, 108(2):109–173, 1996.
  36. Adrian Miranda. Internal categories. Master’s thesis, Macquarie University, 2018. Available at https://figshare.mq.edu.au/articles/thesis/Internal_categories/19434626/1.
  37. Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science & Business Media, 2013.
  38. Sheaves in geometry and logic: A first introduction to topos theory. Springer Science & Business Media, 2012.
  39. nLab authors. fully formal ETCS. https://ncatlab.org/nlab/show/fully+formal+ETCS, December 2023. Revision 31.
  40. Gerhard Osius. Categorical set theory: a characterization of the category of sets. Journal of Pure and Applied Algebra, 4(1):79–119, 1974.
  41. A characterization of pie limits. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 110, pages 33–47. Cambridge University Press, 1991.
  42. David Michael Roberts. Ineternal categories, anafunctors and localisations. Theory and Applications of Categories, 26(29):788–829, 2012.
  43. Elements of ∞\infty∞-category theory, volume 194. Cambridge University Press, 2022.
  44. Raffael Stenzel. The (∞,2)2(\infty,2)( ∞ , 2 )-category of internal (∞,1)1(\infty,1)( ∞ , 1 )-categories, 2024.
  45. Ross Street. Limits indexed by category-valued 2-functors. Journal of Pure and Applied Algebra, 8(2):149–181, 1976.
  46. Ross Street. Cosmoi of internal categories. Transactions of the American Mathematical Society, 258(2):271–318, 1980.
  47. Ross Street. Two-dimensional sheaf theory. Journal of Pure and Applied Algebra, 23(3):251–270, 1982.
  48. Ross Street. Elementary cosmoi i. In Category Seminar: Proceedings Sydney Category Theory Seminar 1972/1973, pages 134–180. Springer, 2006.
  49. Mark Weber. Yoneda structures from 2-toposes. Applied Categorical Structures, 15:259–323, 2007.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 33 likes.