Testing the unified bounds of quantum speed limit (2403.03579v1)
Abstract: Quantum speed limits (QSLs) impose fundamental constraints on the evolution speed of quantum systems. Traditionally, the Mandelstam-Tamm (MT) and Margolus-Levitin (ML) bounds have been widely employed, relying on the standard deviation and mean of energy distribution to define the QSLs. However, these universal bounds only offer loose restrictions on the quantum evolution. Here we introduce the generalized ML bounds, which prove to be more stringent in constraining dynamic evolution, by utilizing moments of energy spectra of arbitrary orders, even noninteger orders. To validate our findings, we conduct experiments in a superconducting circuit, where we have the capability to prepare a wide range of quantum photonic states and rigorously test these bounds by measuring the evolution of the system and its photon statistics using quantum state tomography. While, in general, the MT bound is effective for short-time evolution, we identify specific parameter regimes where either the MT or the generalized ML bounds suffice to constrain the entire evolution. Our findings not only establish new criteria for estimating QSLs but also substantially enhance our comprehension of the dynamic evolution of quantum systems.
- S. Lloyd, Ultimate physical limits to computation, Nature 406, 1047–1054 (2000).
- S. Lloyd, Computational capacity of the universe, Phys. Rev. Lett. 88, 237901 (2002).
- A. C. Santos and M. S. Sarandy, Superadiabatic controlled evolutions and universal quantum computation, Scientific reports 5, 15775 (2015).
- M. Aifer and S. Deffner, From quantum speed limits to energy-efficient quantum gates, New Journal of Physics 24, 055002 (2022).
- L. Mandelstam and I. G. Tamm, The uncertainty relation between energy and time in non-relativistic quantum mechanics, J. Phys. USSR 9, 249 (1945).
- J. Anandan and Y. Aharonov, Geometry of quantum evolution, Phys. Rev. Lett. 65, 1697 (1990).
- N. Margolus and L. B. Levitin, The maximum speed of dynamical evolution, Physica D: Nonlinear Phenomena 120, 188 (1998).
- P. Kosiński and M. Zych, Elementary proof of the bound on the speed of quantum evolution, Phys. Rev. A 73, 024303 (2006).
- L. B. Levitin and T. Toffoli, Fundamental limit on the rate of quantum dynamics: The unified bound is tight, Phys. Rev. Lett. 103, 160502 (2009).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum limits to dynamical evolution, Phys. Rev. A 67, 052109 (2003).
- Niklas Hörnedal, and Ole Sönnerborn, The margolus-levitin quantum speed limit for an arbitrary fidelity, arXiv:2301.10063v1 (2023).
- G. Ness, A. Alberti, and Y. Sagi, Quantum speed limit for states with a bounded energy spectrum, Phys. Rev. Lett. 129, 140403 (2022).
- S. Luo and Z. Zhang, On decaying rate of quantum states, Letters in Mathematical Physics 71, 1 (2005).
- B. Zieliński and M. Zych, Generalization of the margolus-levitin bound, Phys. Rev. A 74, 034301 (2006).
- J.-Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011).
- E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749 (1932).
- F. Arute and et al., Hartree-fock on a superconducting qubit quantum computer, Science 369, 1084 (2020).
- M. Gong and et al., Quantum walks on a programmable two-dimensional 62-qubit superconducting processor, Science 372, 948 (2021).
- R. Acharya and et al., Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023).
- J. Joo, W. J. Munro, and T. P. Spiller, Quantum metrology with entangled coherent states, Phys. Rev. Lett. 107, 083601 (2011).
- E. Distante, M. Ježek, and U. L. Andersen, Deterministic superresolution with coherent states at the shot noise limit, Phys. Rev. Lett. 111, 033603 (2013).
- L. Pezzè and A. Smerzi, Heisenberg-limited noisy atomic clock using a hybrid coherent and squeezed state protocol, Phys. Rev. Lett. 125, 210503 (2020).
- J. Heinze, B. Willke, and H. Vahlbruch, Observation of squeezed states of light in higher-order hermite-gaussian modes with a quantum noise reduction of up to 10 db, Phys. Rev. Lett. 128, 083606 (2022).
- S. Deffner and E. Lutz, Quantum speed limit for non-markovian dynamics, Phys. Rev. Lett. 111, 010402 (2013).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.