Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unifying Controller Design for Stabilizing Nonlinear Systems with Norm-Bounded Control Inputs (2403.03030v1)

Published 5 Mar 2024 in eess.SY, cs.AI, cs.SY, and math.OC

Abstract: This paper revisits a classical challenge in the design of stabilizing controllers for nonlinear systems with a norm-bounded input constraint. By extending Lin-Sontag's universal formula and introducing a generic (state-dependent) scaling term, a unifying controller design method is proposed. The incorporation of this generic scaling term gives a unified controller and enables the derivation of alternative universal formulas with various favorable properties, which makes it suitable for tailored control designs to meet specific requirements and provides versatility across different control scenarios. Additionally, we present a constructive approach to determine the optimal scaling term, leading to an explicit solution to an optimization problem, named optimization-based universal formula. The resulting controller ensures asymptotic stability, satisfies a norm-bounded input constraint, and optimizes a predefined cost function. Finally, the essential properties of the unified controllers are analyzed, including smoothness, continuity at the origin, stability margin, and inverse optimality. Simulations validate the approach, showcasing its effectiveness in addressing a challenging stabilizing control problem of a nonlinear system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. E. D. Sontag, “A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization,” Systems & Control Letters, vol. 13, no. 2, pp. 117–123, 1989.
  2. Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis: Theory, Methods & Applications, vol. 7, no. 11, pp. 1163–1173, 1983.
  3. J.-F. Guerrero-Castellanos, J. J. Téllez-Guzmán, S. Durand, N. Marchand, J. U. Alvarez-Muñoz, and V. R. Gonzalez-Diaz, “Attitude stabilization of a quadrotor by means of event-triggered nonlinear control,” Journal of Intelligent & Robotic Systems, vol. 73, pp. 123–135, 2014.
  4. M. Li, Z. Sun, and S. Weiland, “Quadrotor stabilization with safety guarantees: A universal formula approach,” arXiv preprint arXiv:2401.03500, 2024.
  5. M. Li and Z. Sun, “A graphical interpretation and universal formula for safe stabilization,” in 2023 American Control Conference (ACC).   IEEE, 2023, pp. 3012–3017.
  6. A. Mohammadi and M. W. Spong, “Chetaev instability framework for kinetostatic compliance-based protein unfolding,” IEEE Control Systems Letters, vol. 6, pp. 2755–2760, 2022.
  7. Y. Lin and E. D. Sontag, “A universal formula for stabilization with bounded controls,” Systems & Control Letters, vol. 16, no. 6, pp. 393–397, 1991.
  8. H. Leyva, B. Aguirre-Hernández, and J. F. Espinoza, “Stabilization of affine systems with polytopic control value sets,” Journal of Dynamical and Control Systems, vol. 29, no. 4, pp. 1929–1941, 2023.
  9. M. Malisoff and E. D. Sontag, “Universal formulas for feedback stabilization with respect to Minkowski balls,” Systems & Control Letters, vol. 40, no. 4, pp. 247–260, 2000.
  10. J. W. Curtis, “CLF-based nonlinear control with polytopic input constraints,” in 2003 IEEE 42nd Conference on Decision and Control (CDC), vol. 3.   IEEE, 2003, pp. 2228–2233.
  11. J. Solís-Daun and H. Leyva, “On the global CLF stabilization of systems with polytopic control value sets,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 11 042–11 047, 2011.
  12. H. Leyva, J. Solis-Daun, and R. Suárez, “Global CLF stabilization of systems with control inputs constrained to a hyperbox,” SIAM Journal on Control and Optimization, vol. 51, no. 1, pp. 745–766, 2013.
  13. H. Leyva and J. Solís-Daun, “Global CLF stabilization of systems with respect to a hyperbox, allowing the null-control input in its boundary (positive controls),” in 53rd IEEE Conference on Decision and Control.   IEEE, 2014, pp. 3107–3112.
  14. N. H. El-Farra and P. D. Christofides, “Integrating robustness, optimality and constraints in control of nonlinear processes,” Chemical Engineering Science, vol. 56, no. 5, pp. 1841–1868, 2001.
  15. P. Mhaskar, N. H. El-Farra, and P. D. Christofides, “Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control,” Systems & Control Letters, vol. 55, no. 8, pp. 650–659, 2006.
  16. P. Ong and J. Cortés, “Universal formula for smooth safe stabilization,” in 2019 IEEE 58th Conference on Decision and Control (CDC).   IEEE, 2019, pp. 2373–2378.
  17. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2016.
  18. M. Krstic, “Inverse optimal safety filters,” IEEE Transactions on Automatic Control, 2023.
  19. M. H. Cohen, P. Ong, G. Bahati, and A. D. Ames, “Characterizing smooth safety filters via the implicit function theorem,” IEEE Control Systems Letters, 2023.
  20. J. A. Primbs, V. Nevistic, and J. C. Doyle, “A receding horizon generalization of pointwise min-norm controllers,” IEEE Transactions on Automatic Control, vol. 45, no. 5, pp. 898–909, 2000.
  21. J. W. Curtis and R. W. Beard, “Satisficing: A new approach to constructive nonlinear control,” IEEE Transactions on Automatic Control, vol. 49, no. 7, pp. 1090–1102, 2004.
  22. P. Mestres, A. Allibhoy, and J. Cortés, “Robinson’s counterexample and regularity properties of optimization-based controllers,” arXiv preprint arXiv:2311.13167, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.