Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Sontag s to Cardano-Lyapunov Formula for Systems Not Affine in the Control: Convection-Enabled PDE Stabilization (2403.18071v1)

Published 26 Mar 2024 in eess.SY, cs.SY, and math.AP

Abstract: We propose the first generalization of Sontag s universal controller to systems not affine in the control, particularly, to PDEs with boundary actuation. We assume that the system admits a control Lyapunov function (CLF) whose derivative, rather than being affine in the control, has either a depressed cubic, quadratic, or depressed quartic dependence on the control. For each case, a continuous universal controller that vanishes at the origin and achieves global exponential stability is derived. We prove our result in the context of convectionreaction-diffusion PDEs with Dirichlet actuation. We show that if the convection has a certain structure, then the L2 norm of the state is a CLF. In addition to generalizing Sontag s formula to some non-affine systems, we present the first general Lyapunov approach for boundary control of nonlinear PDEs. We illustrate our results via a numerical example.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Z. Artstein, “Stabilization with Relaxed Controls,” Nonlinear Analysis: Theory, Methods & Applications, vol. 7, no. 11, pp. 1163–1173, 1983.
  2. E. D. Sontag, “A ‘Universal’ Construction of Artstein’s Theorem on Nonlinear Stabilization,” Systems & control letters, vol. 13, no. 2, pp. 117–123, 1989.
  3. M. Krstić and H. Deng, Stabilization of Nonlinear Uncertain Systems. Springer, 1998.
  4. Y. Lin and E. D. Sontag, “A Universal Formula for Stabilization with Bounded Controls,” Systems & control letters, vol. 16, no. 6, pp. 393–397, 1991.
  5. M. Krstić and P. V. Kokotovic, “Control Lyapunov functions for Adaptive Nonlinear Stabilization,” Systems & Control Letters, vol. 26, no. 1, pp. 17–23, 1995.
  6. M. Krstić and Z.-H. Li, “Inverse Optimal Design of Input-To-State Stabilizing Nonlinear Controllers,” IEEE Transactions on Automatic Control, vol. 43, no. 3, pp. 336–350, 1998.
  7. H. Deng, M. Krstić, and R. J. Williams, “Stabilization of Stochastic Nonlinear Systems Driven by Noise of Unknown Covariance,” IEEE Transactions on Automatic Control, vol. 46, no. 8, pp. 1237–1253, 2001.
  8. D. Liberzon, E. D. Sontag, and Y. Wang, “Universal Construction of Feedback Laws Achieving ISS and Integral-ISS Disturbance Attenuation,” Systems & Control Letters, vol. 46, no. 2, pp. 111–127, 2002.
  9. N. Marchand, S. Durand, and J. F. G. Castellanos, “A General Formula for Event-Based Stabilization of Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 58, no. 5, pp. 1332–1337, 2013.
  10. M. Krstić, “On Global Stabilization of Burgers’ Equation by Boundary Control,” Systems & Control Letters, vol. 37, no. 3, pp. 123–141, 1999.
  11. W.-J. Liu and M. Krstić, “Stability Enhancement by Boundary Control in the Kuramoto–Sivashinsky Equation,” Nonlinear Analysis: Theory, Methods & Applications, vol. 43, no. 4, pp. 485–507, 2001.
  12. M. Maghenem, C. Prieur, and E. Witrant, “Boundary Control of the Kuramoto-Sivashinsky Equation Under Intermittent Data Availability,” in American Control Conference (ACC), pp. 2227–2232, 2022.
  13. M. C. Belhadjoudja, M. Maghenem, E. Witrant, and C. Prieur, “Adaptive Stabilization of the Kuramoto-Sivashinsky Equation Subject to Intermittent Sensing,” in American Control Conference (ACC), pp. 1608–1613, 2023.
  14. S. Zekraoui, N. Espitia, and W. Perruquetti, “Lyapunov-Based Nonlinear Boundary Control Design with Predefined Convergence for a Class of 1D Linear Reaction-Diffusion Equations,” European Journal of Control, p. 100845, 2023.
  15. H. Fujita, “On the Blowing Up of Solutions of the Cauchy Problem for ut=Δ⁢u+u1+σsubscript𝑢𝑡Δ𝑢superscript𝑢1𝜎u_{t}={\Delta}u+u^{1+\sigma}italic_u start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = roman_Δ italic_u + italic_u start_POSTSUPERSCRIPT 1 + italic_σ end_POSTSUPERSCRIPT,” J. Fac. Sci. Univ. Tokyo, vol. 13, pp. 109–124, 1966.
  16. K. Deng and H. A. Levine, “The Role of Critical Exponents in Blow-Up Theorems: The Sequel,” Journal of Mathematical Analysis and Applications, vol. 243, no. 1, pp. 85–126, 2000.
  17. E. Fernandez-Cara and E. Zuazua, “Null and Approximate Controllability for Weakly Blowing Up Semilinear Heat Equations,” Annales de l’Institut Henri Poincaré C, Analyse non linéaire, vol. 17, no. 5, pp. 583–616, 2000.
  18. M. Krstić and R. Vazquez, “Nonlinear Control of PDEs: Are Feedback Linearization and Geometric Methods Applicable?,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 20–27, 2007.
  19. R. Vazquez and M. Krstić, “Control of 1-D Parabolic PDEs with Volterra Nonlinearities, part I: Design,” Automatica, vol. 44, no. 11, pp. 2778–2790, 2008.
  20. R. Vazquez and M. Krstić, “Control of 1D Parabolic PDEs with Volterra Nonlinearities, Part II: Analysis,” Automatica, vol. 44, no. 11, pp. 2791–2803, 2008.
  21. J. Buckmaster, “Viscous Sheets Advancing Over Dry Beds,” Journal of Fluid Mechanics, vol. 81, no. 4, pp. 735–756, 1977.
Citations (2)

Summary

We haven't generated a summary for this paper yet.