Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Updating Static Output Feedback Controllers Under State-Space Perturbation (2307.16178v3)

Published 30 Jul 2023 in eess.SY, cs.SY, and math.OC

Abstract: In this paper, we propose a novel update of a nominal stabilizing static output feedback (SOF) controller for a perturbed linear system. In almost every classical feedback controller design problem, a stabilizing feedback controller is designed given a stabilizable unstable system. In realistic scenarios, the system model is usually imperfect and subject to perturbations. A typical approach to attenuate the impacts of such perturbations on the system stability is repeating the whole controller design procedure to find an updated stabilizing SOF controller. Such an approach can be inefficient and occasionally infeasible. Using the notion of minimum destabilizing real perturbation (MDRP), we construct a simple norm minimization problem (a least-squares problem) to propose an efficient update of a nominal stabilizing SOF controller that can be applied to various control engineering applications in the case of perturbed scenarios like abrupt changes or inaccurate system models. In particular, considering norm-bounded known or unknown perturbations, this paper presents updated stabilizing SOF controllers and derives sufficient stability conditions. Geometric metrics to quantitatively measure the approach's robustness are defined. Moreover, we characterize the corresponding guaranteed stability regions, and specifically, for the case of norm-bounded unknown perturbations, we propose non-fragility-based robust updated stabilizing SOF controllers. Through extensive numerical simulations, we assess the effectiveness of the theoretical results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. S. Barnett and C. Storey, “Insensitivity of optimal linear control systems to persistent changes in parameters,” International Journal of Control, vol. 4, no. 2, pp. 179–184, 1966.
  2. S. Chang and T. Peng, “Adaptive guaranteed cost control of systems with uncertain parameters,” IEEE Transactions on Automatic Control, vol. 17, no. 4, pp. 474–483, 1972.
  3. P. Wong and M. Athans, “Closed-loop structural stability for linear-quadratic optimal systems,” IEEE Transactions on Automatic Control, vol. 22, no. 1, pp. 94–99, 1977.
  4. R. Patel, M. Toda, and B. Sridhar, “Robustness of linear quadratic state feedback designs in the presence of system uncertainty,” IEEE Transactions on Automatic Control, vol. 22, no. 6, pp. 945–949, 1977.
  5. R. Patel and M. Toda, “Quantitative measures of robustness for multivariable systems,” in Joint Automatic Control Conference, no. 17, 1980, p. 35.
  6. M. F. Barrett, “Conservatism with robustness tests for linear feedback control systems,” in 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, 1980, pp. 885–890.
  7. R. Yedavalli, “Improved measures of stability robustness for linear state space models,” IEEE Transactions on Automatic Control, vol. 30, no. 6, pp. 577–579, 1985.
  8. R. Yedavalli and Z. Liang, “Reduced conservatism in stability robustness bounds by state transformation,” IEEE Transactions on Automatic Control, vol. 31, no. 9, pp. 863–866, 1986.
  9. I. R. Petersen, “A stabilization algorithm for a class of uncertain linear systems,” Systems & Control Letters, vol. 8, no. 4, pp. 351–357, 1987.
  10. P. P. Khargonekar, I. R. Petersen, and K. Zhou, “Robust stabilization of uncertain linear systems: quadratic stabilizability and H∞superscript𝐻{H}^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT control theory,” IEEE Transactions on Automatic Control, vol. 35, no. 3, pp. 356–361, 1990.
  11. L. Xie, M. Fu, C. E. de Souza et al., “H∞superscript𝐻{H}^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT control and quadratic stabilization of systems with parameter uncertainty via output feedback,” IEEE Transactions on Automatic Control, vol. 37, no. 8, pp. 1253–1256, 1992.
  12. D. Peaucelle and D. Arzelier, “Ellipsoidal sets for resilient and robust static output-feedback,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 899–904, 2005.
  13. R. Arastoo, M. Bahavarnia, M. V. Kothare, and N. Motee, “Closed-loop feedback sparsification under parametric uncertainties,” in 55th IEEE Conference on Decision and Control, 2016, pp. 123–128.
  14. T. Jennawasin and D. Banjerdpongchai, “Iterative LMI approach to robust static output feedback control of uncertain polynomial systems with bounded actuators,” Automatica, vol. 123, p. 109292, 2021.
  15. T. A. Lima, D. d. S. Madeira, V. V. Viana, and R. C. Oliveira, “Static output feedback stabilization of uncertain rational nonlinear systems with input saturation,” Systems & Control Letters, vol. 168, p. 105359, 2022.
  16. V. V. Viana, D. de Sousa Madeira, and T. A. Lima, “A convex approach for the robust static output feedback stabilization of lti systems based on dissipativity theory,” in European Control Conference.   IEEE, 2023, pp. 1–6.
  17. O. Toker and H. Ozbay, “On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback,” in Proceedings of American Control Conference, vol. 4.   IEEE, 1995, pp. 2525–2526.
  18. A. Majumdar, G. Hall, and A. A. Ahmadi, “Recent scalability improvements for semidefinite programming with applications in machine learning, control, and robotics,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 3, pp. 331–360, 2020.
  19. D. Henrion, J. Lofberg, M. Kocvara, and M. Stingl, “Solving polynomial static output feedback problems with penbmi,” in Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 7581–7586.
  20. Q. T. Dinh, S. Gumussoy, W. Michiels, and M. Diehl, “Combining convex–concave decompositions and linearization approaches for solving bmis, with application to static output feedback,” IEEE Transactions on Automatic Control, vol. 57, no. 6, pp. 1377–1390, 2011.
  21. C. A. Crusius and A. Trofino, “Sufficient lmi conditions for output feedback control problems,” IEEE Transactions on Automatic Control, vol. 44, no. 5, pp. 1053–1057, 1999.
  22. C. Van Loan, “How near is a stable matrix to an unstable matrix?” Cornell University, Tech. Rep., 1984.
  23. M. Bahavarnia, C. Somarakis, and N. Motee, “State feedback controller sparsification via a notion of non-fragility,” in 56th Annual Conference on Decision and Control (CDC).   IEEE, 2017, pp. 4205–4210.
  24. M. Bahavarnia, “State-feedback controller sparsification via quasi-norms,” in American Control Conference (ACC).   IEEE, 2019, pp. 748–753.
  25. D. Hinrichsen and A. J. Pritchard, “Stability radii of linear systems,” Systems & Control Letters, vol. 7, no. 1, pp. 1–10, 1986.
  26. ——, “Real and complex stability radii: a survey,” in Control of Uncertain Systems: Proceedings of an International Workshop Bremen, West Germany, June 1989.   Springer, 1990, pp. 119–162.
  27. M. A. Rahimian and M. S. Tavazoei, “Constrained tuning of two-parameter controllers: a centroid approach,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 226, no. 5, pp. 685–698, 2012.
  28. ——, “Application of stability region centroids in robust pi stabilization of a class of second-order systems,” Transactions of the Institute of Measurement and Control, vol. 34, no. 4, pp. 487–498, 2012.
  29. M. Bahavarnia and M. S. Tavazoei, “A new view to ziegler–nichols step response tuning method: Analytic non-fragility justification,” Journal of Process Control, vol. 23, no. 1, pp. 23–33, 2013.
  30. ——, “A probabilistic framework to achieve robust non-fragile tuning methods: PD control of IPD-modeled processes,” International Journal of Robust and Nonlinear Control, vol. 32, no. 18, pp. 9593–9609, 2022.
  31. S. Li, “Concise formulas for the area and volume of a hyperspherical cap,” Asian Journal of Mathematics & Statistics, vol. 4, no. 1, pp. 66–70, 2011.
  32. F. Leibfritz, “Compleib: Constrained matrix optimization problem library,” 2006.
  33. P. Gahinet and P. Apkarian, “Structured ℋ∞subscriptℋ\mathcal{H}_{\infty}caligraphic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT synthesis in MATLAB,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 1435–1440, 2011.
  34. P. Apkarian and D. Noll, “Nonsmooth H∞superscript𝐻{H}^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT synthesis,” IEEE Transactions on Automatic Control, vol. 51, no. 1, pp. 71–86, 2006.
  35. R. Harman and V. Lacko, “On decompositional algorithms for uniform sampling from n-spheres and n-balls,” Journal of Multivariate Analysis, vol. 101, no. 10, pp. 2297–2304, 2010.

Summary

We haven't generated a summary for this paper yet.