Papers
Topics
Authors
Recent
2000 character limit reached

Attempt at Constructing a Model of Grand Gauge-Higgs Unification with Family Unification

Published 5 Mar 2024 in hep-ph | (2403.02731v2)

Abstract: We discuss a possibility whether a model of grand gauge-Higgs unification incorporating family unification in higher dimensions can be constructed. We first extend a five dimensional $SU(6)$ grand gauge-Higgs unification model to a five dimensional $SU(7)$ grand gauge-Higgs unification model compactified on an orbifold $S1/Z_2$ to obtain three generations of quarks and leptons after symmetrybreaking of the larger family unified gauge group. A prescription of constructing a six dimensional $SU(N)$ grand gauge-Higgs unification model including a five dimensional $SU(7)$ grand gauge-Higgs unification after compactifying the sixth dimension on an orbifold $S1/Z_2$ is given. We find a six dimensional $SU(14)$ grand gauge-Higgs unification model with a set of representations containing three generations of quarks and leptons.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. H. Georgi, “Towards a Grand Unified Theory of Flavor,” Nucl. Phys. B 156 (1979), 126-134.
  2. P. H. Frampton, “SU(N𝑁Nitalic_N) Grand Unification With Several Quark - Lepton Generations,” Phys. Lett. B 88 (1979), 299-301.
  3. P. Frampton and S. Nandi, “SU(9) Grand Unification of Flavor With Three Generations,” Phys. Rev. Lett. 43 (1979), 1460.
  4. P. H. Frampton, “Unification of Flavor,” Phys. Lett. B 89 (1980), 352-354.
  5. M. Ida, Y. Kayama and T. Kitazoe, “Inclusion of Generations in SO(14),” Prog. Theor. Phys. 64 (1980), 1745.
  6. F. Wilczek and A. Zee, “Families from Spinors,” Phys. Rev. D 25 (1982), 553.
  7. S. Nandi, A. Stern and E. C. G. Sudarshan, “Structure of Proton Decay in SO(n𝑛nitalic_n) Family Unification,” Phys. Rev. D 26 (1982), 1653.
  8. Y. Fujimoto, “SO(18) Unification,” Phys. Rev. D 26 (1982), 3183.
  9. J. Bagger, S. Dimopoulos and E. Masso, “Proton Lifetime in Orthogonal Theories of Family Unification,” Phys. Lett. B 145 (1984), 211-215.
  10. J. A. Bagger, S. Dimopoulos, E. Masso and M. H. Reno, “A realistic theory of family unification,” Nucl. Phys. B 258 (1985), 565-600.
  11. S. M. Barr, “E8subscript𝐸8E_{8}italic_E start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT family unification, mirror fermions, and new low-energy physics,” Phys. Rev. D 37 (1988), 204.
  12. P. H. Frampton and T. W. Kephart, “Minimal family unification,” Phys. Rev. D 51 (1995) no.1, R1-R4 [arXiv:hep-ph/9409324 [hep-ph]].
  13. K. S. Babu, S. M. Barr and B. Kyae, “Family unification in five-dimensions and six-dimensions,” Phys. Rev. D 65 (2002), 115008, [arXiv:hep-ph/0202178 [hep-ph]].
  14. Z. y. Han and W. Skiba, “Family unification on an orbifold,” Phys. Rev. D 70 (2004), 035013, [arXiv:hep-ph/0405199 [hep-ph]].
  15. Y. Kawamura, T. Kinami and K. y. Oda, “Orbifold family unification,” Phys. Rev. D 76 (2007), 035001, [arXiv:hep-ph/0703195 [hep-ph]].
  16. Y. Kawamura and T. Kinami, “Sfermion mass relations in orbifold family unification,” Prog. Theor. Phys. 119 (2008), 285-301, [arXiv:0709.1524 [hep-ph]].
  17. P. H. Frampton and T. W. Kephart, “Fermion Mixings in SU(9) Family Unification,” Phys. Lett. B 681 (2009), 343-346, [arXiv:0904.3084 [hep-ph]].
  18. C. H. Albright, Robert. P. Feger and Thomas. W/ Kephart, “An explicit SU(12) family and flavor unification model with natural fermion masses and mixings,” Phys. Rev. D 86 (2012), 015012, [arXiv:1204.5471 [hep-ph]].
  19. Y. Goto, Y. Kawamura and T. Miura, “Orbifold family unification on six dimensions,” Phys. Rev. D 88 (2013) no.5, 055016, [arXiv:1307.2631 [hep-ph]].
  20. Y. Goto and Y. Kawamura, “Predictions of SU (9) orbifold family unification,” Phys. Lett. B 752 (2016), 252-257, [arXiv:1508.06357 [hep-ph]].
  21. M. Reig, J. W. F. Valle, C. A. Vaquera-Araujo and F. Wilczek, “A Model of Comprehensive Unification,” Phys. Lett. B 774 (2017), 667-670, [arXiv:1706.03116 [hep-ph]].
  22. N. Yamatsu, “Family Unification in Special Grand Unification,” PTEP 2018 (2018) no.9, 091B01, [arXiv:1807.10855 [hep-ph]].
  23. C. S. Lim and N. Maru, “Towards a realistic grand gauge-Higgs unification,” Phys. Lett. B 653 (2007), 320-324, [arXiv:0706.1397 [hep-ph]].
  24. K. Kojima, K. Takenaga and T. Yamashita, “Grand Gauge-Higgs Unification,” Phys. Rev. D 84 (2011), 051701, [arXiv:1103.1234 [hep-ph]]; “Gauge symmetry breaking patterns in an SU(5) grand gauge-Higgs unification model,” Phys. Rev. D 95 (2017) no.1, 015021, [arXiv:1608.05496 [hep-ph]]; “The Standard Model Gauge Symmetry from Higher-Rank Unified Groups in Grand Gauge-Higgs Unification Models,” JHEP 06 (2017), 018, [arXiv:1704.04840 [hep-ph]]; Phys. Rev. D 108 (2023) no.3, 035031, [arXiv:2304.05701 [hep-ph]].
  25. Y. Hosotani and N. Yamatsu, “Gauge-Higgs grand unification,” PTEP 2015 (2015), 111B01, [arXiv:1504.03817 [hep-ph]]; A. Furui, Y. Hosotani and N. Yamatsu, “Toward Realistic Gauge-Higgs Grand Unification,” PTEP 2016 (2016) no.9, 093B01 [arXiv:1606.07222 [hep-ph]]; Y. Hosotani and N. Yamatsu, “Gauge-Higgs seesaw mechanism in 6-dimensional grand unification,” PTEP 2017 (2017) no.9, 091B01, [arXiv:1706.03503 [hep-ph]]; Y. Hosotani and N. Yamatsu, “Electroweak symmetry breaking and mass spectra in six-dimensional gauge–Higgs grand unification,” PTEP 2018 (2018) no.2, 023B05, [arXiv:1710.04811 [hep-ph]].
  26. N. Maru and Y. Yatagai, “Fermion Mass Hierarchy in Grand Gauge-Higgs Unification,” PTEP 2019 (2019) no.8, 083B03, [arXiv:1903.08359 [hep-ph]]; N. Maru and Y. Yatagai, “Improving fermion mass hierarchy in grand gauge–Higgs unification with localized gauge kinetic terms,” Eur. Phys. J. C 80 (2020) no.10, 933, [arXiv:1911.03465 [hep-ph]]; N. Maru, H. Takahashi and Y. Yatagai, “Gauge coupling unification in simplified grand gauge-Higgs unification,” Phys. Rev. D 106 (2022) no.5, 055033, [arXiv:2207.10253 [hep-ph]].
  27. A. Angelescu, A. Bally, S. Blasi and F. Goertz, “Minimal SU(6) gauge-Higgs grand unification,” Phys. Rev. D 105 (2022) no.3, 035026 [arXiv:2104.07366 [hep-ph]]; A. Angelescu, A. Bally, F. Goertz and S. Weber, “SU(6) gauge-Higgs grand unification: minimal viable models and flavor,” JHEP 04 (2023), 012, [arXiv:2208.13782 [hep-ph]].
  28. B. A. Dobrescu and E. Poppitz, “Number of fermion generations derived from anomaly cancellation,” Phys. Rev. Lett. 87 (2001), 031801, [arXiv:hep-ph/0102010 [hep-ph]].
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 3 likes about this paper.