Surface gravity analysis in Gauss-Bonnet and Barrow black holes (2403.02540v1)
Abstract: We have different definitions of the surface gravity (SG) of a horizon since we can say we have distinct classifications of horizons. The SG has an underlying role in the laws of black hole (BH) thermodynamics, being constant in the event horizon. The SG also acts in the emission of Hawking radiation being connected to its temperature. Concerning this last issue, the quantum features that permeate Hawking radiation provide us a direct indication that a BH has its temperature directly connected to its area and that its entropy is proportional to the horizon area. In this work we analyzed some aspects of event horizons. Analyzing how the SG can be classically defined for stationary BHs together with the radial pressure computation. So, the SG, through the laws of BH mechanics is connected to the real thermodynamical temperature of a thermal spectrum. We discussed these subjects in two different BHs scenarios, the five dimensional Gauss-Bonnet one and the recently developed Barrow entropy construction. We discussed how the quantum fluctuations affect these both quantities.
- J. D. Bekenstein, Phys. Rev. D 7 (1973) 2333; Phys. Rev. D 9 (1974) 3292.
- S. W. Hawking, Commun. Math. Phys. 43 (1975) 199; Phys. Rev. Lett. 26 (1971) 1344.
- T. Padmanabhan, Mod. Phys. Lett. A 30 (2015) 1540007; Phys. Rept. 406 (2005) 49; Mod. Phys. Lett. A 17 (2002) 923.
- A. B. Nielsen and J. H. Yoon, Class. Quantum Grav. 25 (2008) 085010.
- S. Sarkar and S. Bhattacharya, Phys. Rev. D 87 (2013) 049023.
- S. A. Hayward, Phys. Rev. D 49 (1994) 6467; A. Ashtekar and B. Krishnan, Liv. Rev. Rel. 7 (2004) 10; A. B. Nielsen, “Black holes as local horizons,” arXiv: 0711.0313.
- C. Lanczos, Z. Phys. 73 (19320 147; Ann. Math. 39 (1938) 842.
- J. Barrow, Phys. Lett. B 808 (2020) 135643.
- E. M. C. Abreu, “Barrow black hole variable parameter model and the information theory,” arXiv 2402.15922.
- S. Basilakos, A. Lymperis, M. Petronikolou and E. N. Saridakis, “Barrow holographic dark enrgy with varying exponet,” arXiv2312.15767.
- J. D. Barrow, S. Basilakos and E. N. Saridakis, “Big Bang Nucleosynthesis constraints on Barrow entropy,” arXiv: 2010.00986 [gr-qc]; E. N. Saridakis, JCAP 07 (2020) 031, arXiv: 2006.01105; F. K. Anagnostopoulos, S. Basilakos and E. N. Saridakis, Eur. Phys. J. C 80 (2020) 826; E. N. Saridakis and S. Basilakos, “The generalized second law of thermodynamics with Barrow entropy,” arXiv: 2005.08258 [gr-qc]; E. N. Saridakis, Phys. Rev. D 102 (2020) 123525, arXiv: 2005.04115.
- T. Jacobson and R. C. Myers, Phys. Rev. Lett. 70 (1993) 3684.
- R. C. Myers and J. Z. Simon, Phys. Rev. D 38 (1988) 2434.
- N. D. Birrel and P. C. W. Davies, “Quantum fields in curved space,” Cambridge University Press (CUP), 1992.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.