Papers
Topics
Authors
Recent
2000 character limit reached

The General Principle behind Magnetization-induced Second-Order Topological Corner States in the Kane-Mele Model

Published 4 Mar 2024 in cond-mat.mes-hall | (2403.02017v1)

Abstract: We propose a general principle for realizing second-order topological corner states in the modified Kane-Mele model with magnetization. It is demonstrated that the sign of the edge Dirac mass depends on the magnetization of the edge sublattice termination. By adjusting the directions of magnetization according to the type of sublattice at the termination of two edges, a mass domain wall can be induced in the presence of topological corner states at an arbitrary position. All previous work on introducing magnetization in the Kane-Mele model to realize second-order topological corner states can be explained by the presence of the Dirac mass domain wall with opposite signs. Applying this principle, we design square-shaped and armchair-type hexagon-shaped graphene nanoflakes with edge magnetization, allowing for the emergence of second-order topological corner states. Our findings serve as a general theory, demonstrating that the realization of second-order topological corner states is not limited by boundary type or nanoflake shape.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.