Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aerial Tensile Perching and Disentangling Mechanism for Long-Term Environmental Monitoring (2403.01890v2)

Published 4 Mar 2024 in cs.RO

Abstract: Aerial robots show significant potential for forest canopy research and environmental monitoring by providing data collection capabilities at high spatial and temporal resolutions. However, limited flight endurance hinders their application. Inspired by natural perching behaviours, we propose a multi-modal aerial robot system that integrates tensile perching for energy conservation and a suspended actuated pod for data collection. The system consists of a quadrotor drone, a slewing ring mechanism allowing 360{\deg} tether rotation, and a streamlined pod with two ducted propellers connected via a tether. Winding and unwinding the tether allows the pod to move within the canopy, and activating the propellers allows the tether to be wrapped around branches for perching or disentangling. We experimentally determined the minimum counterweights required for stable perching under various conditions. Building on this, we devised and evaluated multiple perching and disentangling strategies. Comparisons of perching and disentangling manoeuvres demonstrate energy savings that could be further maximized with the use of the pod or tether winding. These approaches can reduce energy consumption to only 22\% and 1.5\%, respectively, compared to a drone disentangling manoeuvre. We also calculated the minimum idle time required by the proposed system after the system perching and motor shut down to save energy on a mission, which is 48.9\% of the operating time. Overall, the integrated system expands the operational capabilities and enhances the energy efficiency of aerial robots for long-term monitoring tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. G. G. Parker et al., “Structure and microclimate of forest canopies.” Forest canopies., pp. 73–106, 1995.
  2. M. Lowman, “Life in the treetops—an overview of forest canopy science and its future directions,” Plants, People, Planet, vol. 3, no. 1, pp. 16–21, 2021.
  3. B. B. Kocer, B. Ho, X. Zhu, P. Zheng, A. Farinha, F. Xiao, B. Stephens, F. Wiesemüller, L. Orr, and M. Kovac, “Forest drones for environmental sensing and nature conservation,” in 2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO).   IEEE, 2021, pp. 1–8.
  4. P. De Frenne, J. Lenoir, M. Luoto, B. R. Scheffers, F. Zellweger, J. Aalto, M. B. Ashcroft, D. M. Christiansen, G. Decocq, K. De Pauw et al., “Forest microclimates and climate change: Importance, drivers and future research agenda,” Global Change Biology, vol. 27, no. 11, pp. 2279–2297, 2021.
  5. M. G. Barker and M. A. Pinard, “Forest canopy research: sampling problems, and some solutions,” in Tropical Forest Canopies: Ecology and Management: Proceedings of ESF Conference, Oxford University, 12–16 December 1998.   Springer, 2001, pp. 23–38.
  6. B. Ho, B. B. Kocer, and M. Kovac, “Vision based crown loss estimation for individual trees with remote aerial robots,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 188, pp. 75–88, 2022.
  7. S. Manfreda, M. F. McCabe, P. E. Miller, R. Lucas, V. Pajuelo Madrigal, G. Mallinis, E. Ben Dor, D. Helman, L. Estes, G. Ciraolo et al., “On the use of unmanned aerial systems for environmental monitoring,” Remote sensing, vol. 10, no. 4, p. 641, 2018.
  8. A. Jaakkola, J. Hyyppä, X. Yu, A. Kukko, H. Kaartinen, X. Liang, H. Hyyppä, and Y. Wang, “Autonomous collection of forest field reference—the outlook and a first step with uav laser scanning,” Remote sensing, vol. 9, no. 8, p. 785, 2017.
  9. D. Floreano and R. J. Wood, “Science, technology and the future of small autonomous drones,” nature, vol. 521, no. 7553, pp. 460–466, 2015.
  10. DJI, “matrice-200-series-v2,” 2023, https://www.dji.com/de/matrice-200-series-v2/info [Accessed: (17.08.2023)].
  11. B. B. Kocer, V. Kumtepeli, T. Tjahjowidodo, M. Pratama, A. Tripathi, G. S. G. Lee, and Y. Wang, “Uav control in close proximities-ceiling effect on battery lifetime,” in 2019 2nd International Conference on Intelligent Autonomous Systems (ICoIAS).   IEEE, 2019, pp. 193–197.
  12. K. C. Broers and S. F. Armanini, “Design and testing of a bioinspired lightweight perching mechanism for flapping-wing mavs using soft grippers,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7526–7533, 2022.
  13. W. R. Roderick, M. R. Cutkosky, and D. Lentink, “Bird-inspired dynamic grasping and perching in arboreal environments,” Science Robotics, vol. 6, no. 61, p. eabj7562, 2021.
  14. S. Kirchgeorg, B. Benist, and S. Mintchev, “Soft gripper with adjustable microspines for adhering to tree branches,” in Climbing and Walking Robots Conference.   Springer, 2022, pp. 61–74.
  15. S. Kirchgeorg and S. Mintchev, “Hedgehog: Drone perching on tree branches with high-friction origami spines,” IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 602–609, 2021.
  16. H.-N. Nguyen, R. Siddall, B. Stephens, A. Navarro-Rubio, and M. Kovač, “A passively adaptive microspine grapple for robust, controllable perching,” in 2019 2nd IEEE international conference on soft robotics (RoboSoft).   IEEE, 2019, pp. 80–87.
  17. F. Hauf, B. B. Kocer, A. Slatter, H.-N. Nguyen, O. Pang, R. Clark, E. Johns, and M. Kovac, “Learning tethered perching for aerial robots,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 1298–1304.
  18. P. Zheng, F. Xiao, P. H. Nguyen, A. Farinha, and M. Kovac, “Metamorphic aerial robot capable of mid-air shape morphing for rapid perching,” Scientific Reports, vol. 13, no. 1, p. 1297, 2023.
  19. P. H. Nguyen, K. Patnaik, S. Mishra, P. Polygerinos, and W. Zhang, “A soft-bodied aerial robot for collision resilience and contact-reactive perching,” Soft Robotics, 2023.
  20. L. Zheng and S. Hamaza, “Albero: Agile landing on branches for environmental robotics operations,” IEEE Robotics and Automation Letters, vol. 9, no. 3, pp. 2845–2852, 2024.
  21. M. Askari, M. Benciolini, H.-V. Phan, W. Stewart, A. J. Ijspeert, and D. Floreano, “Crash-perching on vertical poles with a hugging-wing robot,” 2024.
  22. C. D. Francis and J. R. Barber, “A framework for understanding noise impacts on wildlife: an urgent conservation priority,” Frontiers in Ecology and the Environment, vol. 11, no. 6, pp. 305–313, 2013.
  23. J. Brouček, “Effect of noise on performance, stress, and behaviour of animals,” Slovak journal of animal science, vol. 47, no. 2, pp. 111–123, 2014.
  24. L. L. Pater, T. G. Grubb, and D. K. Delaney, “Recommendations for improved assessment of noise impacts on wildlife,” The Journal of Wildlife Management, vol. 73, no. 5, pp. 788–795, 2009.
  25. P. J. McKerrow and D. Ratner, “The design of a tethered aerial robot,” in Proceedings 2007 IEEE International Conference on Robotics and Automation.   IEEE, 2007, pp. 355–360.
  26. M. Polzin, F. Centamori, and J. Hughes, “Heading for the abyss: Control strategies for exploiting swinging of a descending tethered aerial robot,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 5373–5378.
  27. K. Zhang, P. Chermprayong, T. Alhinai, R. Siddall, and M. Kovac, “Spidermav: Perching and stabilizing micro aerial vehicles with bio-inspired tensile anchoring systems,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 6849–6854.
  28. S. Kirchgeorg and S. Mintchev, “Multimodal aerial-tethered robot for tree canopy exploration,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 6080–6086.
  29. S. Kirchgeorg, E. Aucone, F. Wenk, and S. Mintchev, “Design, modeling and control of avocado: A multimodal aerial-tethered robot for tree canopy exploration,” IEEE Transactions on Robotics, 2023.
  30. L. Kania, M. Krynke, and E. Mazanek, “A catalogue capacity of slewing bearings,” Mechanism and machine theory, vol. 58, pp. 29–45, 2012.
  31. S. Solomon, “The eggshell: strength, structure and function,” British poultry science, vol. 51, no. sup1, pp. 52–59, 2010.
  32. R. Lim, K. Lim, and S. Foong, “Design and analysis of a gravitic tether-based grappler for aerial payload deployment,” in 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).   IEEE, 2022, pp. 695–702.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com