Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Crash Landing onto "you": Untethered Soft Aerial Robots for Safe Environmental Interaction, Sensing, and Perching (2405.10043v2)

Published 16 May 2024 in cs.RO

Abstract: There are various desired capabilities to create aerial forest-traversing robots capable of monitoring both biological and abiotic data. The features range from multi-functionality, robustness, and adaptability. These robots have to weather turbulent winds and various obstacles such as forest flora and wildlife thus amplifying the complexity of operating in such uncertain environments. The key for successful data collection is the flexibility to intermittently move from tree-to-tree, in order to perch at vantage locations for elongated time. This effort to perch not only reduces the disturbance caused by multi-rotor systems during data collection, but also allows the system to rest and recharge for longer outdoor missions. Current systems feature the addition of perching modules that increase the aerial robots' weight and reduce the drone's overall endurance. Thus in our work, the key questions currently studied are: "How do we develop a single robot capable of metamorphosing its body for multi-modal flight and dynamic perching?", "How do we detect and land on perchable objects robustly and dynamically?", and "What important spatial-temporal data is important for us to collect?"

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. F. Altermatt, C. J. Little, E. Maechler, S. Wang, X. Zhang, and R. C. Blackman, “Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems,” Oikos, vol. 129, no. 5, pp. 607–618, 2020.
  2. S. Hamaza, H. Nguyen, and M. Kovac, “Sensor delivery in forests with aerial robots: A new paradigm for environmental monitoring,” in IEEE IROS Workshop on Perception, Planning and Mobility in Forestry Robotics, 2020.
  3. E. Aucone, S. Kirchgeorg, A. Valentini, L. Pellissier, K. Deiner, and S. Mintchev, “Drone-assisted collection of environmental dna from tree branches for biodiversity monitoring. science robotics, 8 (74), eadd5762,” 2023.
  4. M. Chellapurath, P. C. Khandelwal, and A. K. Schulz, “Bioinspired robots can foster nature conservation,” Frontiers in Robotics and AI, vol. 10, 2023.
  5. K. Hang, X. Lyu, H. Song, J. A. Stork, A. M. Dollar, D. Kragic, and F. Zhang, “Perching and resting—a paradigm for uav maneuvering with modularized landing gears,” Science Robotics, vol. 4, no. 28, p. eaau6637, 2019.
  6. J. Meng, J. Buzzatto, Y. Liu, and M. Liarokapis, “On aerial robots with grasping and perching capabilities: A comprehensive review,” Frontiers in Robotics and AI, vol. 8, p. 739173, 2022.
  7. P. H. Nguyen and M. Kovač, “Adopting physical artificial intelligence in soft aerial robots,” in IOP Conference Series: Materials Science and Engineering, vol. 1261, p. 012006, IOP Publishing, 2022.
  8. F. Stella and J. Hughes, “The science of soft robot design: A review of motivations, methods and enabling technologies,” Frontiers in Robotics and AI, vol. 9, p. 365.
  9. P. H. Nguyen and W. Zhang, “Design and computational modeling of fabric soft pneumatic actuators for wearable assistive devices,” Scientific reports, vol. 10, no. 1, p. 9638, 2020.
  10. P. H. Nguyen, C. Sparks, S. G. Nuthi, N. M. Vale, and P. Polygerinos, “Soft poly-limbs: Toward a new paradigm of mobile manipulation for daily living tasks,” Soft robotics, vol. 6, no. 1, pp. 38–53, 2019.
  11. P. H. Nguyen, S. Sridar, S. Amatya, C. M. Thalman, and P. Polygerinos, “Fabric-based soft grippers capable of selective distributed bending for assistance of daily living tasks,” in 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), pp. 404–409, IEEE, 2019.
  12. Z. Qiao, P. H. Nguyen, and W. Zhang, “Model-based contact detection and position control of a fabric soft robot in unknown environments,” Frontiers in Robotics and AI, vol. 9, p. 997366, 2022.
  13. P. H. Nguyen, Z. Qiao, S. Seidel, S. Amatya, I. I. Mohd, and W. Zhang, “Towards an untethered knit fabric soft continuum robotic module with embedded fabric sensing,” in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), pp. 615–620, IEEE, 2020.
  14. P. H. Nguyen, K. Patnaik, S. Mishra, P. Polygerinos, and W. Zhang, “A soft-bodied aerial robot for collision resilience and contact-reactive perching,” Soft Robotics, vol. 10, no. 4, pp. 838–851, 2023.
  15. L. Li, S. Wang, Y. Zhang, S. Song, C. Wang, S. Tan, W. Zhao, G. Wang, W. Sun, F. Yang, et al., “Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces,” Science robotics, vol. 7, no. 66, p. eabm6695, 2022.
  16. P. Zheng, F. Xiao, P. H. Nguyen, A. Farinha, and M. Kovac, “Metamorphic aerial robot capable of mid-air shape morphing for rapid perching,” Scientific Reports, vol. 13, no. 1, p. 1297, 2023.
  17. H. Jia, S. Bai, and P. Chirarattananon, “Aerial manipulation via modular quadrotors with passively foldable airframes,” IEEE/ASME Transactions on Mechatronics, 2023.
  18. F. Ruiz, B. C. Arrue, and A. Ollero, “Sophie: Soft and flexible aerial vehicle for physical interaction with the environment,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11086–11093, 2022.
  19. W. R. Roderick, M. R. Cutkosky, and D. Lentink, “Bird-inspired dynamic grasping and perching in arboreal environments,” Science Robotics, vol. 6, no. 61, p. eabj7562, 2021.
  20. Y. Livny, F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-Sana, “Automatic reconstruction of tree skeletal structures from point clouds,” in ACM SIGGRAPH Asia 2010 papers, pp. 1–8, 2010.
  21. Y. Li, “Rapid tree model reconstruction for fruit harvesting robot system based on binocular stereo vision,” Vibroengineering Procedia, vol. 12, pp. 159–165, 2017.
  22. S. T. Digumarti, L. M. Schmid, G. M. Rizzi, J. Nieto, R. Siegwart, P. Beardsley, and C. Cadena, “An approach for semantic segmentation of tree-like vegetation,” in 2019 International Conference on Robotics and Automation (ICRA), pp. 1801–1807, IEEE, 2019.
  23. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3213–3223, 2016.
  24. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference on computer vision, pp. 740–755, Springer, 2014.

Summary

We haven't generated a summary for this paper yet.