Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perch a quadrotor on planes by the ceiling effect (2307.00861v1)

Published 3 Jul 2023 in cs.RO, cs.SY, and eess.SY

Abstract: Perching is a promising solution for a small unmanned aerial vehicle (UAV) to save energy and extend operation time. This paper proposes a quadrotor that can perch on planar structures using the ceiling effect. Compared with the existing work, this perching method does not require any claws, hooks, or adhesive pads, leading to a simpler system design. This method does not limit the perching by surface angle or material either. The design of the quadrotor that only uses its propeller guards for surface contact is presented in this paper. We also discussed the automatic perching strategy including trajectory generation and power management. Experiments are conducted to verify that the approach is practical and the UAV can perch on planes with different angles. Energy consumption in the perching state is assessed, showing that more than 30% of power can be saved. Meanwhile, the quadrotor exhibits improved stability while perching compared to when it is hovering.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. K. Hang, X. Lyu, H. Song, J. A. Stork, A. M. Dollar, D. Kragic, and F. Zhang, “Perching and resting—a paradigm for uav maneuvering with modularized landing gears,” Science Robotics, vol. 4, no. 28, p. eaau6637, 2019.
  2. Y. H. Hsiao and P. Chirarattananon, “Ceiling effects for hybrid aerial–surface locomotion of small rotorcraft,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 5, pp. 2316–2327, 2019.
  3. L. Bai, H. Wang, X. Chen, J. Zheng, L. Xin, Y. Deng, and Y. Sun, “Design and experiment of a deformable bird-inspired uav perching mechanism,” Journal of Bionic Engineering, vol. 18, no. 6, pp. 1304–1316, 2021.
  4. C. E. Doyle, J. J. Bird, T. A. Isom, C. J. Johnson, J. C. Kallman, J. A. Simpson, R. J. King, J. J. Abbott, and M. A. Minor, “Avian-inspired passive perching mechanism for robotic rotorcraft,” in 2011 IEEE/RSJ international conference on intelligent robots and systems.   IEEE, 2011, pp. 4975–4980.
  5. C. E. Doyle, J. J. Bird, T. A. Isom, J. C. Kallman, D. F. Bareiss, D. J. Dunlop, R. J. King, J. J. Abbott, and M. A. Minor, “An avian-inspired passive mechanism for quadrotor perching,” IEEE/ASME Transactions On Mechatronics, vol. 18, no. 2, pp. 506–517, 2012.
  6. M. L. Burroughs, K. Beauwen Freckleton, J. J. Abbott, and M. A. Minor, “A sarrus-based passive mechanism for rotorcraft perching,” Journal of Mechanisms and Robotics, vol. 8, no. 1, 2016.
  7. W. R. Roderick, M. R. Cutkosky, and D. Lentink, “Bird-inspired dynamic grasping and perching in arboreal environments,” Science Robotics, vol. 6, no. 61, p. eabj7562, 2021.
  8. P. Zheng, F. Xiao, P. H. Nguyen, A. Farinha, and M. Kovac, “Metamorphic aerial robot capable of mid-air shape morphing for rapid perching,” Scientific Reports, vol. 13, no. 1, p. 1297, 2023.
  9. M. Anderson, “The sticky-pad plane and other innovative concepts for perching uavs,” in 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2009, p. 40.
  10. L. Daler, A. Klaptocz, A. Briod, M. Sitti, and D. Floreano, “A perching mechanism for flying robots using a fibre-based adhesive,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 4433–4438.
  11. E. W. Hawkes, D. L. Christensen, E. V. Eason, M. A. Estrada, M. Heverly, E. Hilgemann, H. Jiang, M. T. Pope, A. Parness, and M. R. Cutkosky, “Dynamic surface grasping with directional adhesion,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2013, pp. 5487–5493.
  12. A. Kalantari, K. Mahajan, D. Ruffatto, and M. Spenko, “Autonomous perching and take-off on vertical walls for a quadrotor micro air vehicle,” in 2015 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2015, pp. 4669–4674.
  13. J. Thomas, M. Pope, G. Loianno, E. W. Hawkes, M. A. Estrada, H. Jiang, M. R. Cutkosky, and V. Kumar, “Aggressive flight with quadrotors for perching on inclined surfaces,” Journal of Mechanisms and Robotics, vol. 8, no. 5, p. 051007, 2016.
  14. D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control for precise aggressive maneuvers with quadrotors,” The International Journal of Robotics Research, vol. 31, no. 5, pp. 664–674, 2012.
  15. J. Ji, T. Yang, C. Xu, and F. Gao, “Real-time trajectory planning for aerial perching,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 10 516–10 522.
  16. C. Powers, D. Mellinger, A. Kushleyev, B. Kothmann, and V. Kumar, “Influence of aerodynamics and proximity effects in quadrotor flight,” in Experimental Robotics: The 13th International Symposium on Experimental Robotics.   Springer, 2013, pp. 289–302.
  17. T. Nishio, M. Zhao, F. Shi, T. Anzai, K. Kawaharazuka, K. Okada, and M. Inaba, “Stable control in climbing and descending flight under upper walls using ceiling effect model based on aerodynamics,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 172–178.
  18. D. J. Carter, L. Bouchard, and D. B. Quinn, “Influence of the ground, ceiling, and sidewall on micro-quadrotors,” AIAA Journal, vol. 59, no. 4, pp. 1398–1405, 2021.
  19. P. J. Sanchez-Cuevas, G. Heredia, and A. Ollero, “Multirotor uas for bridge inspection by contact using the ceiling effect,” in 2017 International Conference on Unmanned Aircraft Systems (ICUAS).   IEEE, 2017, pp. 767–774.
  20. A. E. Jimenez-Cano, P. J. Sanchez-Cuevas, P. Grau, A. Ollero, and G. Heredia, “Contact-based bridge inspection multirotors: Design, modeling, and control considering the ceiling effect,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3561–3568, 2019.
  21. M. Maier, “Bidirectional thrust for multirotor mavs with fixed-pitch propellers,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 1–8.
  22. W. Jothiraj, C. Miles, E. Bulka, I. Sharf, and M. Nahon, “Enabling bidirectional thrust for aggressive and inverted quadrotor flight,” in 2019 International Conference on Unmanned Aircraft Systems (ICUAS).   IEEE, 2019, pp. 534–541.
  23. J. Bass and A. L. Desbiens, “Improving multirotor landing performance on inclined surfaces using reverse thrust,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5850–5857, 2020.
  24. W. Jothiraj, I. Sharf, and M. Nahon, “Control allocation of bidirectional thrust quadrotor subject to actuator constraints,” in 2020 International Conference on Unmanned Aircraft Systems (ICUAS).   IEEE, 2020, pp. 932–938.
  25. P. Yu, G. Chamitoff, and K. Wong, “Perching upside down with bi-directional thrust quadrotor,” in 2020 International Conference on Unmanned Aircraft Systems (ICUAS).   IEEE, 2020, pp. 1697–1703.
  26. Z. Zhang, P. Xie, and O. Ma, “Bio-inspired trajectory generation for uav perching,” in 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.   IEEE, 2013, pp. 997–1002.
  27. M. Cutler and J. How, “Actuator constrained trajectory generation and control for variable-pitch quadrotors,” in AIAA Guidance, Navigation, and Control Conference, 2012, p. 4777.
  28. T. Ai, W. Fan, B. Xu, C. Xiang, Y. Zhang, and Z. Zhao, “Aerodynamic analysis and modeling of coaxial ducted fan aircraft with the ceiling effect,” Engineering Applications of Computational Fluid Mechanics, vol. 15, no. 1, pp. 1563–1584, 2021.
  29. Y. Li, K. Yonezawa, and H. Liu, “Effect of ducted multi-propeller configuration on aerodynamic performance in quadrotor drone,” Drones, vol. 5, no. 3, p. 101, 2021.
  30. Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained trajectory optimization for multicopters,” IEEE Transactions on Robotics, vol. 38, no. 5, pp. 3259–3278, 2022.

Summary

We haven't generated a summary for this paper yet.