Employing LLMs for Incident Response Planning and Review (2403.01271v1)
Abstract: Incident Response Planning (IRP) is essential for effective cybersecurity management, requiring detailed documentation (or playbooks) to guide security personnel during incidents. Yet, creating comprehensive IRPs is often hindered by challenges such as complex systems, high turnover rates, and legacy technologies lacking documentation. This paper argues that, despite these obstacles, the development, review, and refinement of IRPs can be significantly enhanced through the utilization of LLMs like ChatGPT. By leveraging LLMs for tasks such as drafting initial plans, suggesting best practices, and identifying documentation gaps, organizations can overcome resource constraints and improve their readiness for cybersecurity incidents. We discuss the potential of LLMs to streamline IRP processes, while also considering the limitations and the need for human oversight in ensuring the accuracy and relevance of generated content. Our findings contribute to the cybersecurity field by demonstrating a novel approach to enhancing IRP with AI technologies, offering practical insights for organizations seeking to bolster their incident response capabilities.
- Nist special publication 800-61 rev. 2, computer security incident handling guide, Aug 2012.
- Dolan, G. T. There’s a s.m.a.r.t. way to write management’s goals and objectives. Management Review 70, 11 (1981), 35–36.
- Parkinson, C. N. c. N. Parkinson’s law. Penguin business library. Penguin Books, Harlow, England, Mar. 1986.
- Preston-Werner, T. Semantic versioning 2.0.0.
- Nist special publication 800-34 rev.1, contingency planning guide for federation information systems, 2010.