Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulating chiral spin liquids with fermionic Projected Entangled Paired States (2403.01243v2)

Published 2 Mar 2024 in cond-mat.str-el

Abstract: Chiral Spin Liquids (CSL) based on spin-1/2 fermionic Projected Entangled Pair States (fPEPS) are considered on the square lattice. First, fPEPS approximants of Gutzwiller-projected Chern insulators (GPCI) are investigated by Variational Monte Carlo (VMC) techniques on finite size tori. We show that such fPEPS of finite bond dimension can correctly capture the topological properties of the chiral spin liquid, as the exact GPCI, with the correct topological ground state degeneracy on the torus. Further, more general fPEPS are considered and optimized (on the infinite plane) to describe the CSL phase of a chiral frustrated Heisenberg antiferromagnet. The chiral modes are computed on the edge of a semi-infinite cylinder (of finite circumference) and shown to follow the predictions from Conformal Field Theory. In contrast to their bosonic analogs the (optimized) fPEPS do not suffer from the replication of the chiral edge mode in the odd topological sector.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. X. G. Wen, F. Wilczek, and A. Zee, Chiral spin states and superconductivity, Phys. Rev. B 39, 11413 (1989).
  2. X.-G. Wen, Gapless boundary excitations in the quantum hall states and in the chiral spin states, Phys. Rev. B 43, 11025 (1991).
  3. H. Yao and S. A. Kivelson, Exact chiral spin liquid with non-abelian anyons, Phys. Rev. Lett. 99, 247203 (2007).
  4. S.-S. Gong, W. Zhu, and D. Sheng, Emergent chiral spin liquid: Fractional quantum Hall effect in a kagome heisenberg model, Scientific reports 4, 6317 (2014).
  5. F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, arXiv preprint cond-mat/0407066  (2004).
  6. N. Schuch, I. Cirac, and D. Pérez-García, Peps as ground states: Degeneracy and topology, Annals of Physics 325, 2153 (2010).
  7. D. Poilblanc, J. I. Cirac, and N. Schuch, Chiral topological spin liquids with projected entangled pair states, Phys. Rev. B 91, 224431 (2015).
  8. D. Poilblanc, N. Schuch, and I. Affleck, SU(2)1subscript21(2)_{1}( 2 ) start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT chiral edge modes of a critical spin liquid, Phys. Rev. B 93, 174414 (2016).
  9. D. Poilblanc, Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states, Phys. Rev. B 96, 121118 (2017).
  10. J. Dubail and N. Read, Tensor network trial states for chiral topological phases in two dimensions and a no-go theorem in any dimension, Phys. Rev. B 92, 205307 (2015).
  11. J. Hasik and G. Mbeng, peps-torch: A differentiable tensor network library for two-dimensional lattice models (2020).
  12. A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Local models of fractional quantum Hall states in lattices and physical implementation, Nature Communications 4, 2864 (2013).
  13. J. Yang, Z. Liu, and L. Wang, Ground state phase diagram and the exotic phases in the spin-1/2 square lattice J1subscript𝐽1J_{1}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-Jχsubscript𝐽𝜒J_{\chi}italic_J start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT model (2024), arXiv:2401.03434 [cond-mat.str-el] .
  14. J.-W. Li, J. von Delft, and H.-H. Tu, u⁢(1)𝑢1u(1)italic_u ( 1 )-symmetric gaussian fermionic projected entangled paired states and their gutzwiller projection, Physical Review B 107, 085148 (2023).
  15. F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press, 2017).
  16. T. Nishino and K. Okunishi, Corner transfer matrix renormalization group method, Journal of the Physical Society of Japan 65, 891 (1996).
  17. P. Corboz, T. M. Rice, and M. Troyer, Competing states in the t-J model: Uniform d-wave state versus stripe state, Phys. Rev. Lett. 113, 046402 (2014).
  18. Y. Zhang, T. Grover, and A. Vishwanath, Topological entanglement entropy of ℤ2subscriptℤ2{\mathbb{Z}}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT spin liquids and lattice laughlin states, Physical Review B 84, 075128 (2011).
  19. J.-W. Mei and X.-G. Wen, Modular matrices from universal wave-function overlaps in Gutzwiller-projected parton wave functions, Physical Review B 91, 125123 (2015).
  20. X. G. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum hall states in the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev. B 41, 9377 (1990).
Citations (1)

Summary

We haven't generated a summary for this paper yet.