Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum-number projected generator coordinate method for $^{21}$Ne with a chiral two-nucleon-plus-three-nucleon interaction (2403.01177v3)

Published 2 Mar 2024 in nucl-th and nucl-ex

Abstract: We report a study of the low-lying states of deformed ${21}$Ne within the framework of quantum-number projected generator coordinate method (PGCM), starting from a chiral two-nucleon-plus-three-nucleon (NN+3N) interaction. The wave functions of states are constructed as a linear combination of a set of axially-deformed Hartree-Fock-Bogliubov (HFB) wave functions with different quadrupole deformations. These HFB wave functions are projected onto different angular momenta and the correct neutron and proton numbers for ${21}$Ne. The results of calculations based on the effective Hamiltonians derived by normal-ordering the 3N interaction with respect to three different reference states, including the quantum-number projected HFB wave functions for ${20}$Ne, ${22}$Ne, and an ensemble of them with equal weights, are compared. This study serves as a key step towards ab initio calculations of odd-mass deformed nuclei with the in-medium GCM.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Nuclear structure. Volume II. Nuclear deformations; Word Scientific: Singapore, 1998.
  2. The nuclear many-body problem; Springer-Verlag: New York, 1980.
  3. Electric Dipole Moments of Nucleons, Nuclei, and Atoms: The Standard Model and Beyond. Prog. Part. Nucl. Phys. 2013, 71, 21–74, [arXiv:nucl-th/1303.2371]. https://doi.org/10.1016/j.ppnp.2013.03.003.
  4. Arrowsmith-Kron, G.; et al. Opportunities for Fundamental Physics Research with Radioactive Molecules 2023. [arXiv:nucl-ex/2302.02165].
  5. Brodeur, M.; et al. Nuclear β𝛽\betaitalic_β decay as a probe for physics beyond the Standard Model. 1 2023, [arXiv:nucl-ex/2301.03975].
  6. Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism. Prog. Part. Nucl. Phys. 2022, 126, 103965, [arXiv:nucl-th/2111.15543]. https://doi.org/10.1016/j.ppnp.2022.103965.
  7. Nuclear constitution and the interpretation of fission phenomena. Phys. Rev. 1953, 89, 1102–1145. https://doi.org/10.1103/PhysRev.89.1102.
  8. Collective Motions in Nuclei by the Method of Generator Coordinates. Phys. Rev. 1957, 108, 311–327. https://doi.org/10.1103/PhysRev.108.311.
  9. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 2003, 75, 121–180. https://doi.org/10.1103/RevModPhys.75.121.
  10. Relativistic Nuclear Energy Density Functionals: Mean-Field and Beyond. Prog. Part. Nucl. Phys. 2011, 66, 519–548, [arXiv:nucl-th/1102.4193]. https://doi.org/10.1016/j.ppnp.2011.01.055.
  11. Symmetry restoration in mean-field approaches. J. Phys. G 2021, 48, 123001, [arXiv:nucl-th/1901.06992]. https://doi.org/10.1088/1361-6471/ac288a.
  12. No-core Monte Carlo shell-model calculation for 1010{}^{10}start_FLOATSUPERSCRIPT 10 end_FLOATSUPERSCRIPTBe and 1212{}^{12}start_FLOATSUPERSCRIPT 12 end_FLOATSUPERSCRIPTBe low-lying spectra. Phys. Rev. C 2012, 86, 014302. https://doi.org/10.1103/PhysRevC.86.014302.
  13. Generator-coordinate reference states for spectra and 0⁢ν⁢β⁢β0𝜈𝛽𝛽0\nu\beta\beta0 italic_ν italic_β italic_β decay in the in-medium similarity renormalization group. Phys. Rev. C 2018, 98, 054311, [arXiv:nucl-th/1807.11053]. https://doi.org/10.1103/PhysRevC.98.054311.
  14. Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of Ca48superscriptCa48{}^{48}\mathrm{Ca}start_FLOATSUPERSCRIPT 48 end_FLOATSUPERSCRIPT roman_Ca. Phys. Rev. Lett. 2020, 124, 232501. https://doi.org/10.1103/PhysRevLett.124.232501.
  15. Multi-reference many-body perturbation theory for nuclei: I. Novel PGCM-PT formalism. Eur. Phys. J. A 2022, 58, 62, [arXiv:nucl-th/2110.15737]. https://doi.org/10.1140/epja/s10050-022-00692-z.
  16. Multi-reference many-body perturbation theory for nuclei: II. Ab initio study of neon isotopes via PGCM and IM-NCSM calculations. Eur. Phys. J. A 2022, 58, 63, [arXiv:nucl-th/2111.00797]. https://doi.org/10.1140/epja/s10050-022-00693-y.
  17. Multi-reference many-body perturbation theory for nuclei: III. Ab initio calculations at second order in PGCM-PT. Eur. Phys. J. A 2022, 58, 64, [arXiv:nucl-th/2111.01461]. https://doi.org/10.1140/epja/s10050-022-00694-x.
  18. Kimura, M. The Intruder feature of Mg-31 and the coexistence of many particle and many hole states. Phys. Rev. C 2007, 75, 041302, [nucl-th/0702012]. https://doi.org/10.1103/PhysRevC.75.041302.
  19. Kimura, M. Spectroscopy and intruder configurations of 3333{}^{33}start_FLOATSUPERSCRIPT 33 end_FLOATSUPERSCRIPTMg and 3131{}^{31}start_FLOATSUPERSCRIPT 31 end_FLOATSUPERSCRIPTNe studied with antisymmetrized molecular dynamics 2011. [arXiv:nucl-th/1105.3281].
  20. Beyond Mean-Field Calculations for Odd-Mass Nuclei. Phys. Rev. Lett. 2014, 113, 162501, [arXiv:nucl-th/1406.5984]. https://doi.org/10.1103/PhysRevLett.113.162501.
  21. Structure of 128,129,130128129130{}^{128,129,130}start_FLOATSUPERSCRIPT 128 , 129 , 130 end_FLOATSUPERSCRIPTXe through multi-reference energy density functional calculations. Eur. Phys. J. A 2022, 58, 187, [arXiv:nucl-th/2207.13576]. https://doi.org/10.1140/epja/s10050-022-00833-4.
  22. The shape of gold. Eur. Phys. J. A 2023, 59, 58, [arXiv:nucl-th/2301.02420]. https://doi.org/10.1140/epja/s10050-023-00955-3.
  23. A symmetry-conserving description of odd nuclei with the Gogny force. Eur. Phys. J. A 2016, 52, 277, [arXiv:nucl-th/1609.02472]. [Erratum: Eur.Phys.J.A 53, 38 (2017)], https://doi.org/10.1140/epja/i2016-16277-8.
  24. Ground-state properties of even and odd Magnesium isotopes in a symmetry-conserving approach. Phys. Lett. B 2017, 764, 328–334, [arXiv:nucl-th/1611.06982]. https://doi.org/10.1016/j.physletb.2016.11.037.
  25. Symmetry Conserving Configuration Mixing description of odd mass nuclei. Phys. Rev. C 2018, 98, 044317, [arXiv:nucl-th/1809.04287]. https://doi.org/10.1103/PhysRevC.98.044317.
  26. Multireference covariant density-functional theory for the low-lying states of odd-mass nuclei 2023. [arXiv:nucl-th/2311.15305].
  27. Particle-number restoration within the energy density functional formalism. Phys. Rev. C 2009, 79, 044319. https://doi.org/10.1103/PhysRevC.79.044319.
  28. Particle-number restoration within the energy density functional formalism: Nonviability of terms depending on noninteger powers of the density matrices. Phys. Rev. C 2009, 79, 044320. https://doi.org/10.1103/PhysRevC.79.044320.
  29. Hergert, H. In-Medium Similarity Renormalization Group for Closed and Open-Shell Nuclei. Phys. Scripta 2017, 92, 023002, [arXiv:nucl-th/1607.06882]. https://doi.org/10.1088/1402-4896/92/2/023002.
  30. Symmetry-projected variational calculations with the numerical suite TAURUS: I. Variation after particle-number projection. Eur. Phys. J. A 2021, 57, 69, [arXiv:nucl-th/2010.14169]. [Erratum: Eur.Phys.J.A 57, 124 (2021)], https://doi.org/10.1140/epja/s10050-021-00369-z.
  31. Configuration mixing of angular-momentum projected triaxial relativistic mean-field wave functions. Phys. Rev. C 2010, 81, 044311, [arXiv:nucl-th/0912.2650]. https://doi.org/10.1103/PhysRevC.81.044311.
  32. Nonunitary bogoliubov transformations and extension of wick’s theorem. Nuovo Cim. B 1969, 64, 37–55. https://doi.org/10.1007/BF02710281.
  33. Pandya, S.P. Nucleon-Hole Interaction in jjjj\mathrm{jj}roman_jj Coupling. Phys. Rev. 1956, 103, 956–957. https://doi.org/10.1103/PhysRev.103.956.
  34. Evaluation of overlaps between arbitrary fermionic quasiparticle vacua. Phys. Rev. C 2012, 85, 034325. https://doi.org/10.1103/PhysRevC.85.034325.
  35. Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 2003, 68, 041001. https://doi.org/10.1103/PhysRevC.68.041001.
  36. From low-momentum interactions to nuclear structure. Prog. Part. Nucl. Phys. 2010, 65, 94–147, [arXiv:nucl-th/0912.3688]. https://doi.org/10.1016/j.ppnp.2010.03.001.
  37. Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 2011, 83, 031301. https://doi.org/10.1103/PhysRevC.83.031301.
  38. Fomenko, V.N. Projection in the occupation-number space and the canonical transformation. J. Phys. A: General Physics 1970, 3, 8–20. https://doi.org/10.1088/0305-4470/3/1/002.
  39. Firestone, R. Nuclear Data Sheets for A = 21. Nuclear Data Sheets 2015, 127, 1–68. https://doi.org/https://doi.org/10.1016/j.nds.2015.07.001.
  40. The In-Medium Similarity Renormalization Group: A Novel Ab Initio Method for Nuclei. Phys. Rept. 2016, 621, 165–222, [arXiv:nucl-th/1512.06956]. https://doi.org/10.1016/j.physrep.2015.12.007.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.