Quantum-number projected generator coordinate method for $^{21}$Ne with a chiral two-nucleon-plus-three-nucleon interaction (2403.01177v3)
Abstract: We report a study of the low-lying states of deformed ${21}$Ne within the framework of quantum-number projected generator coordinate method (PGCM), starting from a chiral two-nucleon-plus-three-nucleon (NN+3N) interaction. The wave functions of states are constructed as a linear combination of a set of axially-deformed Hartree-Fock-Bogliubov (HFB) wave functions with different quadrupole deformations. These HFB wave functions are projected onto different angular momenta and the correct neutron and proton numbers for ${21}$Ne. The results of calculations based on the effective Hamiltonians derived by normal-ordering the 3N interaction with respect to three different reference states, including the quantum-number projected HFB wave functions for ${20}$Ne, ${22}$Ne, and an ensemble of them with equal weights, are compared. This study serves as a key step towards ab initio calculations of odd-mass deformed nuclei with the in-medium GCM.
- Nuclear structure. Volume II. Nuclear deformations; Word Scientific: Singapore, 1998.
- The nuclear many-body problem; Springer-Verlag: New York, 1980.
- Electric Dipole Moments of Nucleons, Nuclei, and Atoms: The Standard Model and Beyond. Prog. Part. Nucl. Phys. 2013, 71, 21–74, [arXiv:nucl-th/1303.2371]. https://doi.org/10.1016/j.ppnp.2013.03.003.
- Arrowsmith-Kron, G.; et al. Opportunities for Fundamental Physics Research with Radioactive Molecules 2023. [arXiv:nucl-ex/2302.02165].
- Brodeur, M.; et al. Nuclear β𝛽\betaitalic_β decay as a probe for physics beyond the Standard Model. 1 2023, [arXiv:nucl-ex/2301.03975].
- Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism. Prog. Part. Nucl. Phys. 2022, 126, 103965, [arXiv:nucl-th/2111.15543]. https://doi.org/10.1016/j.ppnp.2022.103965.
- Nuclear constitution and the interpretation of fission phenomena. Phys. Rev. 1953, 89, 1102–1145. https://doi.org/10.1103/PhysRev.89.1102.
- Collective Motions in Nuclei by the Method of Generator Coordinates. Phys. Rev. 1957, 108, 311–327. https://doi.org/10.1103/PhysRev.108.311.
- Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 2003, 75, 121–180. https://doi.org/10.1103/RevModPhys.75.121.
- Relativistic Nuclear Energy Density Functionals: Mean-Field and Beyond. Prog. Part. Nucl. Phys. 2011, 66, 519–548, [arXiv:nucl-th/1102.4193]. https://doi.org/10.1016/j.ppnp.2011.01.055.
- Symmetry restoration in mean-field approaches. J. Phys. G 2021, 48, 123001, [arXiv:nucl-th/1901.06992]. https://doi.org/10.1088/1361-6471/ac288a.
- No-core Monte Carlo shell-model calculation for 1010{}^{10}start_FLOATSUPERSCRIPT 10 end_FLOATSUPERSCRIPTBe and 1212{}^{12}start_FLOATSUPERSCRIPT 12 end_FLOATSUPERSCRIPTBe low-lying spectra. Phys. Rev. C 2012, 86, 014302. https://doi.org/10.1103/PhysRevC.86.014302.
- Generator-coordinate reference states for spectra and 0νββ0𝜈𝛽𝛽0\nu\beta\beta0 italic_ν italic_β italic_β decay in the in-medium similarity renormalization group. Phys. Rev. C 2018, 98, 054311, [arXiv:nucl-th/1807.11053]. https://doi.org/10.1103/PhysRevC.98.054311.
- Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of Ca48superscriptCa48{}^{48}\mathrm{Ca}start_FLOATSUPERSCRIPT 48 end_FLOATSUPERSCRIPT roman_Ca. Phys. Rev. Lett. 2020, 124, 232501. https://doi.org/10.1103/PhysRevLett.124.232501.
- Multi-reference many-body perturbation theory for nuclei: I. Novel PGCM-PT formalism. Eur. Phys. J. A 2022, 58, 62, [arXiv:nucl-th/2110.15737]. https://doi.org/10.1140/epja/s10050-022-00692-z.
- Multi-reference many-body perturbation theory for nuclei: II. Ab initio study of neon isotopes via PGCM and IM-NCSM calculations. Eur. Phys. J. A 2022, 58, 63, [arXiv:nucl-th/2111.00797]. https://doi.org/10.1140/epja/s10050-022-00693-y.
- Multi-reference many-body perturbation theory for nuclei: III. Ab initio calculations at second order in PGCM-PT. Eur. Phys. J. A 2022, 58, 64, [arXiv:nucl-th/2111.01461]. https://doi.org/10.1140/epja/s10050-022-00694-x.
- Kimura, M. The Intruder feature of Mg-31 and the coexistence of many particle and many hole states. Phys. Rev. C 2007, 75, 041302, [nucl-th/0702012]. https://doi.org/10.1103/PhysRevC.75.041302.
- Kimura, M. Spectroscopy and intruder configurations of 3333{}^{33}start_FLOATSUPERSCRIPT 33 end_FLOATSUPERSCRIPTMg and 3131{}^{31}start_FLOATSUPERSCRIPT 31 end_FLOATSUPERSCRIPTNe studied with antisymmetrized molecular dynamics 2011. [arXiv:nucl-th/1105.3281].
- Beyond Mean-Field Calculations for Odd-Mass Nuclei. Phys. Rev. Lett. 2014, 113, 162501, [arXiv:nucl-th/1406.5984]. https://doi.org/10.1103/PhysRevLett.113.162501.
- Structure of 128,129,130128129130{}^{128,129,130}start_FLOATSUPERSCRIPT 128 , 129 , 130 end_FLOATSUPERSCRIPTXe through multi-reference energy density functional calculations. Eur. Phys. J. A 2022, 58, 187, [arXiv:nucl-th/2207.13576]. https://doi.org/10.1140/epja/s10050-022-00833-4.
- The shape of gold. Eur. Phys. J. A 2023, 59, 58, [arXiv:nucl-th/2301.02420]. https://doi.org/10.1140/epja/s10050-023-00955-3.
- A symmetry-conserving description of odd nuclei with the Gogny force. Eur. Phys. J. A 2016, 52, 277, [arXiv:nucl-th/1609.02472]. [Erratum: Eur.Phys.J.A 53, 38 (2017)], https://doi.org/10.1140/epja/i2016-16277-8.
- Ground-state properties of even and odd Magnesium isotopes in a symmetry-conserving approach. Phys. Lett. B 2017, 764, 328–334, [arXiv:nucl-th/1611.06982]. https://doi.org/10.1016/j.physletb.2016.11.037.
- Symmetry Conserving Configuration Mixing description of odd mass nuclei. Phys. Rev. C 2018, 98, 044317, [arXiv:nucl-th/1809.04287]. https://doi.org/10.1103/PhysRevC.98.044317.
- Multireference covariant density-functional theory for the low-lying states of odd-mass nuclei 2023. [arXiv:nucl-th/2311.15305].
- Particle-number restoration within the energy density functional formalism. Phys. Rev. C 2009, 79, 044319. https://doi.org/10.1103/PhysRevC.79.044319.
- Particle-number restoration within the energy density functional formalism: Nonviability of terms depending on noninteger powers of the density matrices. Phys. Rev. C 2009, 79, 044320. https://doi.org/10.1103/PhysRevC.79.044320.
- Hergert, H. In-Medium Similarity Renormalization Group for Closed and Open-Shell Nuclei. Phys. Scripta 2017, 92, 023002, [arXiv:nucl-th/1607.06882]. https://doi.org/10.1088/1402-4896/92/2/023002.
- Symmetry-projected variational calculations with the numerical suite TAURUS: I. Variation after particle-number projection. Eur. Phys. J. A 2021, 57, 69, [arXiv:nucl-th/2010.14169]. [Erratum: Eur.Phys.J.A 57, 124 (2021)], https://doi.org/10.1140/epja/s10050-021-00369-z.
- Configuration mixing of angular-momentum projected triaxial relativistic mean-field wave functions. Phys. Rev. C 2010, 81, 044311, [arXiv:nucl-th/0912.2650]. https://doi.org/10.1103/PhysRevC.81.044311.
- Nonunitary bogoliubov transformations and extension of wick’s theorem. Nuovo Cim. B 1969, 64, 37–55. https://doi.org/10.1007/BF02710281.
- Pandya, S.P. Nucleon-Hole Interaction in jjjj\mathrm{jj}roman_jj Coupling. Phys. Rev. 1956, 103, 956–957. https://doi.org/10.1103/PhysRev.103.956.
- Evaluation of overlaps between arbitrary fermionic quasiparticle vacua. Phys. Rev. C 2012, 85, 034325. https://doi.org/10.1103/PhysRevC.85.034325.
- Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 2003, 68, 041001. https://doi.org/10.1103/PhysRevC.68.041001.
- From low-momentum interactions to nuclear structure. Prog. Part. Nucl. Phys. 2010, 65, 94–147, [arXiv:nucl-th/0912.3688]. https://doi.org/10.1016/j.ppnp.2010.03.001.
- Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 2011, 83, 031301. https://doi.org/10.1103/PhysRevC.83.031301.
- Fomenko, V.N. Projection in the occupation-number space and the canonical transformation. J. Phys. A: General Physics 1970, 3, 8–20. https://doi.org/10.1088/0305-4470/3/1/002.
- Firestone, R. Nuclear Data Sheets for A = 21. Nuclear Data Sheets 2015, 127, 1–68. https://doi.org/https://doi.org/10.1016/j.nds.2015.07.001.
- The In-Medium Similarity Renormalization Group: A Novel Ab Initio Method for Nuclei. Phys. Rept. 2016, 621, 165–222, [arXiv:nucl-th/1512.06956]. https://doi.org/10.1016/j.physrep.2015.12.007.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.