Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A clear case for dust obscuration of the lunar retroreflectors (2403.00899v1)

Published 1 Mar 2024 in astro-ph.IM, astro-ph.EP, physics.ins-det, and physics.optics

Abstract: The passive retroreflector arrays placed on the moon by Apollo 11, 14 and 15 astronauts continue to produce valuable Earth-Moon range measurements that enable high-precision tests of gravitational physics, as well as studies of geo- and selenophysics. The optical throughput of these retroreflectors has declined since their deployment, with an additional signal loss at full moon when the reflectors experience direct solar illumination. We show that the loss in return rate can be attributed to the accumulation of a thin layer of lunar dust on the surfaces of the corner cube retroreflectors. First, a careful analysis of the optical link budget for the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) experiment reveals that the lunar return rate is 15--20 times smaller than predicted, a deficit that can be explained by a reflector dust covering fraction of ${\sim} 50$\%. Second, range measurements taken during a lunar eclipse indicate that the solar illumination of the retroreflectors degrades their throughput by an additional factor of ${\sim}15$. Finally, a numerical simulation of heat transfer in dust-coated reflectors is able to model the resulting thermal lensing effect, in which thermal gradients in the retroreflectors degrade their far-field diffraction pattern. A comparison of this simulation to eclipse measurements finds a dust coverage fraction of ${\sim}50$%. Taken together, the link analysis, eclipse observations and thermal modeling support the claim that the retroreflectors are obscured by lunar dust, with both link budget and simulation independently finding the dust fraction to be $\sim$50%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Micro-Sphere Levitation in a Sheath of a Low Pressure Continuous Discharge. Physica Scripta Volume T 89, 163–167. doi:10.1238/Physica.Topical.089a00163.
  2. Laser ranging retro-reflector array for the early Apollo scientific experiments package. http://www.physics.ucsd.edu/tmurphy/apollo/doc/ADL.pdf. Accessed: 2023-12-20.
  3. Lunar Soil Movement Registered by the Apollo 17 Cosmic Dust Experiment, in: Elsaesser, H., Fechtig, H. (Eds.), Interplanetary Dust and Zodiacal Light. volume 48, p. 233. doi:10.1007/3-540-07615-8_486.
  4. Lunar tables and programs from 4000 B.C. to A.D. 8000. Richmond, Va. : Willmann-Bell.
  5. Lunar surface: Dust dynamics and regolith mechanics. Reviews of Geophysics 45. URL: http://dx.doi.org/10.1029/2005RG000184, doi:10.1029/2005rg000184.
  6. Lunar laser ranging in infrared at the Grasse laser station. A&A 602, A90. doi:10.1051/0004-6361/201628590, arXiv:1704.06443.
  7. Horizon-Glow and the Motion of Lunar Dust, in: Grard, R.J.L. (Ed.), Photon and Particle Interactions with Surfaces in Space, p. 545. doi:10.1007/978-94-010-2647-5_36.
  8. View factors for perpendicular and parallel rectangular plates. Journal of Thermophysics and Heat Transfer 7, 173--175.
  9. Laser Ranging Retroreflector. NASA Apollo 15 Preliminary Science Report, Section 14 SP-289, 14--1.
  10. Effects of thermal gradients on total internal reflection corner cubes. Applied Optics 51, 8793. doi:10.1364/AO.51.008793, arXiv:1309.6648.
  11. New views of the lunar plasma environment. Planet. Space Sci. 59, 1681--1694. doi:10.1016/j.pss.2010.08.011.
  12. Evidence for a high altitude distribution of lunar dust. Lunar and Planetary Science Conference Proceedings 3, 2991--3005.
  13. Lunar laser ranging: the millimeter challenge. Reports on Progress in Physics 76, 076901. doi:10.1088/0034-4885/76/7/076901, arXiv:1309.6294.
  14. Polarization and far-field diffraction patterns of total internal reflection corner cubes. Applied Optics 52, 117. doi:10.1364/AO.52.000117, arXiv:1309.6649.
  15. Lunar Eclipse Observations Reveal Anomalous Thermal Performance of Apollo Reflectors. Icarus 231, 183. doi:10.1016/j.icarus.2013.12.006, arXiv:1309.6274.
  16. The Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections. Publ. Astron. Soc. Pac. 120, 20. doi:10.1086/526428, arXiv:0710.0890.
  17. Long-term degradation of optical devices on the moon. Icarus 208, 31--35. doi:10.1016/j.icarus.2010.02.015, arXiv:1003.0713.
  18. The Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit. Phys. Rev. Lett. 98, 071102. doi:10.1103/PhysRevLett.98.071102, arXiv:gr-qc/0702028.
  19. Surveyor Observations of Lunar Horizon-Glow. Moon 10, 121--142. doi:10.1007/BF00655715.
  20. Experimental levitation of dust grains in a plasma sheath. Journal of Geophysical Research (Space Physics) 107, 1408. doi:10.1029/2002JA009347.
  21. The temperature dependence of the refractive indices of fused silica and crystal quartz. Journal of Physics D Applied Physics 16, L97--L100. doi:10.1088/0022-3727/16/5/002.
  22. Large scale lunar horizon glow and a high altitude lunar dust exosphere. Geophys. Res. Lett. 18, 2117--2120. doi:10.1029/91GL02235.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 3 likes.