Papers
Topics
Authors
Recent
2000 character limit reached

Learning Causal Features for Incremental Object Detection

Published 1 Mar 2024 in cs.CV | (2403.00591v1)

Abstract: Object detection limits its recognizable categories during the training phase, in which it can not cover all objects of interest for users. To satisfy the practical necessity, the incremental learning ability of the detector becomes a critical factor for real-world applications. Unfortunately, neural networks unavoidably meet catastrophic forgetting problem when it is implemented on a new task. To this end, many incremental object detection models preserve the knowledge of previous tasks by replaying samples or distillation from previous models. However, they ignore an important factor that the performance of the model mostly depends on its feature. These models try to rouse the memory of the neural network with previous samples but not to prevent forgetting. To this end, in this paper, we propose an incremental causal object detection (ICOD) model by learning causal features, which can adapt to more tasks. Traditional object detection models, unavoidably depend on the data-bias or data-specific features to get the detection results, which can not adapt to the new task. When the model meets the requirements of incremental learning, the data-bias information is not beneficial to the new task, and the incremental learning may eliminate these features and lead to forgetting. To this end, our ICOD is introduced to learn the causal features, rather than the data-bias features when training the detector. Thus, when the model is implemented to a new task, the causal features of the old task can aid the incremental learning process to alleviate the catastrophic forgetting problem. We conduct our model on several experiments, which shows a causal feature without data-bias can make the model adapt to new tasks better. \keywords{Object detection, incremental learning, causal feature.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.