Multiple Classical Noise Mitigation by Multiobjective Robust Quantum Optimal Control (2403.00298v1)
Abstract: High-quality control is a fundamental requirement for quantum computation, but practically it is often hampered by the presence of various types of noises, which can be static or time-dependent. In many realistic scenarios, multiple noise sources coexist, and their resulting noise effects need be corrected to a sufficient order, posing significant challenges for the design of effective robust control methods. Here, we explore the method of robust quantum optimal control to generally tackle the problem of resisting multiple noises from a complicated noise environment. Specifically, we confine our analysis to unitary noises that can be described by classical noise models. This method employs a gradient-based multiobjective optimization algorithm to maximize the control figure of merit, and meanwhile to minimize the perturbative effects of the noises that are allowed for. To verify its effectiveness, we apply this method to a number of examples, including roubust entangling gate in trapped ion system and robust controlled-Z gate in superconducting qubits, under commonly encountered static and time-dependent noises. Our simulation results reveal that robust optimal control can find smooth, robust pulses that can simultaneously resist several noises and thus achieve high-fidelity gates. Therefore, we expect that this method will find wide applications on current noisy quantum computing devices.
- D. Suter and G. A. Álvarez, Colloquium: Protecting quantum information against environmental noise, Rev. Mod. Phys. 88, 041001 (2016).
- C. Ferrie and O. Moussa, Robust and efficient in situ quantum control, Phys. Rev. A 91, 052306 (2015).
- E. Knill, R. Laflamme, and L. Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84, 2525 (2000).
- J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018).
- E. Knill, Quantum computing with realistically noisy devices, Nature 434, 39 (2005).
- E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549, 172 (2017).
- Y. Li and S. C. Benjamin, Efficient variational quantum simulator incorporating active error minimization, Phys. Rev. X 7, 021050 (2017).
- H. K. Cummins, G. Llewellyn, and J. A. Jones, Tackling systematic errors in quantum logic gates with composite rotations, Phys. Rev. A 67, 042308 (2003).
- K. R. Brown, A. W. Harrow, and I. L. Chuang, Arbitrarily accurate composite pulse sequences, Phys. Rev. A 70, 052318 (2004).
- L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82, 2417 (1999).
- L. Viola and E. Knill, Robust dynamical decoupling of quantum systems with bounded controls, Phys. Rev. Lett. 90, 037901 (2003).
- A. M. Souza, G. A. Álvarez, and D. Suter, Robust dynamical decoupling, Phil. Trans. R. Soc. A 370, 4748 (2012).
- G. Dridi, K. Liu, and S. Guérin, Optimal Robust Quantum Control by Inverse Geometric Optimization, Phys. Rev. Lett. 125, 250403 (2020).
- T. Figueiredo Roque, A. A. Clerk, and H. Ribeiro, Engineering fast high-fidelity quantum operations with constrained interactions, npj Quantum Inf. 7, 1 (2021).
- W. D. Oliver, Engineering a revolution, Nat. Phys. 10, 794 (2014).
- C. Van Loan, Computing integrals involving the matrix exponential, IEEE Trans. Automat. Contr. 23, 395 (1978).
- M. Biercuk, A. Doherty, and H. Uys, Dynamical decoupling sequence construction as a filter-design problem, J. Phys. B: At. Mol. Opt. Phys. 44, 154002 (2011a).
- H. Häffner, C. Roos, and R. Blatt, Quantum computing with trapped ions, Phys. Rep. 469, 155 (2008).
- J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74, 4091 (1995).
- A. Sørensen and K. Mølmer, Quantum Computation with Ions in Thermal Motion, Phys. Rev. Lett. 82, 1971 (1999).
- T. J. Green and M. J. Biercuk, Phase-modulated decoupling and error suppression in qubit-oscillator systems, Phys. Rev. Lett. 114, 120502 (2015).
- K. Mølmer and A. Sørensen, Multiparticle Entanglement of Hot Trapped Ions, Phys. Rev. Lett. 82, 1835 (1999).
- A. Sørensen and K. Mølmer, Entanglement and quantum computation with ions in thermal motion, Phys. Rev. A 62, 022311 (2000).
- M. Biercuk, A. Doherty, and H. Uys, Dynamical decoupling sequence construction as a filter-design problem, J. Phys. B: At. Mol. Opt. Phys. 44, 154002 (2011b).
- J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453, 1031 (2008).
- M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339, 1169 (2013).
- G. S. Paraoanu, Microwave-induced coupling of superconducting qubits, Phys. Rev. B 74, 140504 (2006).
- D. J. Egger and F. K. Wilhelm, Optimized controlled-z gates for two superconducting qubits coupled through a resonator, Supercond. Sci. Technol. 27, 014001 (2013).
- F. Poggiali, P. Cappellaro, and N. Fabbri, Optimal control for one-qubit quantum sensing, Phys. Rev. X 8, 021059 (2018).
- J. Li, Subsystem-based approach to scalable quantum optimal control, arXiv:1910.02061 .
- R. Eitan, M. Mundt, and D. J. Tannor, Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods, Phys. Rev. A 83, 053426 (2011).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.