Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Pair density wave order in multiband systems (2403.00156v2)

Published 29 Feb 2024 in cond-mat.supr-con and cond-mat.str-el

Abstract: An indispensable ingredient for pair density wave (PDW) superconductivity is the presence of an attractive pairing interaction at finite momentum. Here, we show how this condition can be met with straightforward electron-density interactions in multiband systems. The electron-density interaction, when projected to the band basis, acquires form factors with nontrivial momentum dependence and thereby exhibits a potential tendency to a finite-momentum pairing instability. By applying a mean-field analysis to two simple multiband models, the checkerboard lattice and three-band Hubbard model, we find that PDW order can indeed become the leading instability if a strong nearest-neighbour attraction is present. Moreover, the condition for the transition from a uniform superconductor to a PDW superconductor is shown via a simple quantum geometric argument.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Y.-M. Wu, Z. Wu, and H. Yao, Pair-density-wave and chiral superconductivity in twisted bilayer transition metal dichalcogenides, Phys. Rev. Lett. 130, 126001 (2023a).
  2. D. Shaffer, F. J. Burnell, and R. M. Fernandes, Weak-coupling theory of pair density wave instabilities in transition metal dichalcogenides, Phys. Rev. B 107, 224516 (2023).
  3. D. Shaffer and L. H. Santos, Triplet pair density wave superconductivity on the π𝜋\piitalic_π-flux square lattice, Phys. Rev. B 108, 035135 (2023).
  4. Z. Han and S. A. Kivelson, Pair density wave and reentrant superconducting tendencies originating from valley polarization, Phys. Rev. B 105, L100509 (2022).
  5. Z. Wu, Y.-M. Wu, and F. Wu, Pair density wave and loop current promoted by van hove singularities in moiré systems, Phys. Rev. B 107, 045122 (2023b).
  6. P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135, A550 (1964).
  7. A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of superconductors, Sov. Phys. JETP 20, 762 (1965).
  8. Y. Wang, D. F. Agterberg, and A. Chubukov, Coexistence of charge-density-wave and pair-density-wave orders in underdoped cuprates, Phys. Rev. Lett. 114, 197001 (2015a).
  9. Y. Wang, D. F. Agterberg, and A. Chubukov, Interplay between pair- and charge-density-wave orders in underdoped cuprates, Phys. Rev. B 91, 115103 (2015b).
  10. P. A. Lee, Amperean pairing and the pseudogap phase of cuprate superconductors, Phys. Rev. X 4, 031017 (2014).
  11. K. Yang, Detection of striped superconductors using magnetic field modulated josephson effect, Journal of Superconductivity and Novel Magnetism 26, 2741 (2013).
  12. Y.-M. Wu, R. Thomale, and S. Raghu, Sublattice interference promotes pair density wave order in kagome metals, Phys. Rev. B 108, L081117 (2023c).
  13. S. D. Wilson and B. R. Ortiz, Av33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTsb55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT kagome superconductors: Progress and future directions (2023), arXiv:2311.05946 [cond-mat.supr-con] .
  14. D. F. Agterberg and H. Tsunetsugu, Dislocations and vortices in pair-density-wave superconductors, Nature Physics 4, 639 (2008).
  15. E. Berg, E. Fradkin, and S. A. Kivelson, Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors, Nature Physics 5, 830 (2009).
  16. D. F. Agterberg, M. Geracie, and H. Tsunetsugu, Conventional and charge-six superfluids from melting hexagonal fulde-ferrell-larkin-ovchinnikov phases in two dimensions, Phys. Rev. B 84, 014513 (2011).
  17. E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Colloquium: Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys. 87, 457 (2015).
  18. Y.-M. Wu and Y. Wang, d𝑑ditalic_d-wave charge-4⁢e4𝑒4e4 italic_e superconductivity from fluctuating pair density waves (2023), arXiv:2303.17631 [cond-mat.supr-con] .
  19. R. Friedberg and T. D. Lee, Gap energy and long-range order in the boson-fermion model of superconductivity, Phys. Rev. B 40, 6745 (1989).
  20. J. Wårdh and M. Granath, Effective model for a supercurrent in a pair-density wave, Phys. Rev. B 96, 224503 (2017).
  21. C. Setty, L. Fanfarillo, and P. J. Hirschfeld, Mechanism for fluctuating pair density wave, Nature Communications 14, 3181 (2023).
  22. Z. Han, S. A. Kivelson, and H. Yao, Strong coupling limit of the holstein-hubbard model, Phys. Rev. Lett. 125, 167001 (2020).
  23. E. Berg, E. Fradkin, and S. A. Kivelson, Pair-density-wave correlations in the kondo-heisenberg model, Phys. Rev. Lett. 105, 146403 (2010).
  24. F. Liu and Z. Han, Pair density wave and s±𝑖𝑑plus-or-minus𝑠𝑖𝑑\mathit{s}\pm{}\mathit{id}italic_s ± italic_id superconductivity in a strongly coupled lightly doped kondo insulator, Phys. Rev. B 109, L121101 (2024).
  25. P. Nikolić, A. A. Burkov, and A. Paramekanti, Finite momentum pairing instability of band insulators with multiple bands, Phys. Rev. B 81, 012504 (2010).
  26. W. Chen and W. Huang, Pair density wave facilitated by bloch quantum geometry in nearly flat band multiorbital superconductors, Science China Physics, Mechanics & Astronomy 66, 287212 (2023).
  27. H.-C. Jiang, Pair density wave in the doped three-band hubbard model on two-leg square cylinders, Phys. Rev. B 107, 214504 (2023).
  28. Y.-F. Jiang and H. Yao, Pair density wave superconductivity: a microscopic model in two dimensions (2023), arXiv:2308.08609 [cond-mat.supr-con] .
  29. G. Wirth, M. Ölschläger, and A. Hemmerich, Evidence for orbital superfluidity in the p-band of a bipartite optical square lattice, Nature Physics 7, 147 (2011).
  30. M. Ölschläger, G. Wirth, and A. Hemmerich, Unconventional superfluid order in the f𝑓fitalic_f band of a bipartite optical square lattice, Phys. Rev. Lett. 106, 015302 (2011).
  31. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Band gaps and electronic structure of transition-metal compounds, Phys. Rev. Lett. 55, 418 (1985).
  32. V. J. Emery, Theory of high-tcsubscripttc{\mathrm{t}}_{\mathrm{c}}roman_t start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT superconductivity in oxides, Phys. Rev. Lett. 58, 2794 (1987).
  33. F. C. Zhang and T. M. Rice, Effective hamiltonian for the superconducting cu oxides, Phys. Rev. B 37, 3759 (1988).
  34. H.-C. Jiang and T. P. Devereaux, Pair density wave and superconductivity in a kinetically frustrated doped emery model on a square lattice, Frontiers in Electronic Materials 3, 10.3389/femat.2023.1323404 (2023).
  35. S. R. White and D. J. Scalapino, Doping asymmetry and striping in a three-orbital cuo2subscriptcuo2{\mathrm{cuo}}_{2}roman_cuo start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT hubbard model, Phys. Rev. B 92, 205112 (2015).
  36. S. A. Parameswaran, R. Roy, and S. L. Sondhi, Fractional quantum hall physics in topological flat bands, Comptes Rendus. Physique 14, 816 (2013).
  37. Z. Liu and E. J. Bergholtz, Recent developments in fractional chern insulators, in Encyclopedia of Condensed Matter Physics (Second Edition), edited by T. Chakraborty (Academic Press, Oxford, 2024) second edition ed., pp. 515–538.
  38. S. Peotta and P. Törmä, Superfluidity in topologically nontrivial flat bands, Nature Communications 6, 8944 (2015).
  39. G. Jiang and Y. Barlas, Pair density waves from local band geometry, Phys. Rev. Lett. 131, 016002 (2023).
  40. T. Kitamura, A. Daido, and Y. Yanase, Quantum geometric effect on fulde-ferrell-larkin-ovchinnikov superconductivity, Phys. Rev. B 106, 184507 (2022).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube