Quantum Hardware Roofline: Evaluating the Impact of Gate Expressivity on Quantum Processor Design (2403.00132v1)
Abstract: The design space of current quantum computers is expansive with no obvious winning solution. This leaves practitioners with a clear question: "What is the optimal system configuration to run an algorithm?". This paper explores hardware design trade-offs across NISQ systems to guide algorithm and hardware design choices. The evaluation is driven by algorithmic workloads and algorithm fidelity models which capture architectural features such as gate expressivity, fidelity, and crosstalk. We also argue that the criteria for gate design and selection should be extended from maximizing average fidelity to a more comprehensive approach that takes into account the gate expressivity with respect to algorithmic structures. We consider native entangling gates (CNOT, ECR, CZ, ZZ, XX, Sycamore, $\sqrt{\text{iSWAP}}$), proposed gates (B Gate, $\sqrt[4]{\text{CNOT}}$, $\sqrt[8]{\text{CNOT}}$), as well as parameterized gates (FSim, XY). Our methodology is driven by a custom synthesis driven circuit compilation workflow, which is able to produce minimal circuit representations for a given system configuration. By providing a method to evaluate the suitability of algorithms for hardware platforms, this work emphasizes the importance of hardware-software co-design for quantum computing.
- S. Aaronson and L. Chen, “Complexity-Theoretic Foundations of Quantum Supremacy Experiments,” arXiv:1612.05903 [quant-ph], Dec. 2016, arXiv: 1612.05903. [Online]. Available: http://arxiv.org/abs/1612.05903
- F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. R. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. N. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandra, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Supplementary information for ”Quantum supremacy using a programmable superconducting processor”,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019, arXiv:1910.11333 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1910.11333
- F. Bao, H. Deng, D. Ding, R. Gao, X. Gao, C. Huang, X. Jiang, H.-S. Ku, Z. Li, X. Ma, X. Ni, J. Qin, Z. Song, H. Sun, C. Tang, T. Wang, F. Wu, T. Xia, W. Yu, F. Zhang, G. Zhang, X. Zhang, J. Zhou, X. Zhu, Y. Shi, J. Chen, H.-H. Zhao, and C. Deng, “Fluxonium: an alternative qubit platform for high-fidelity operations,” Physical Review Letters, vol. 129, no. 1, p. 010502, Jun. 2022, arXiv:2111.13504 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2111.13504
- R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Coherent josephson qubit suitable for scalable quantum integrated circuits,” Phys. Rev. Lett., vol. 111, p. 080502, Aug 2013. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.111.080502
- S. Beauregard, “Circuit for Shor’s algorithm using 2n+3 qubits,” Feb. 2003, arXiv:quant-ph/0205095. [Online]. Available: http://arxiv.org/abs/quant-ph/0205095
- S. Bravyi and A. Kitaev, “Fermionic quantum computation,” Annals of Physics, vol. 298, no. 1, pp. 210–226, May 2002, arXiv:quant-ph/0003137. [Online]. Available: http://arxiv.org/abs/quant-ph/0003137
- M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles, “Challenges and opportunities in quantum machine learning,” Nature Computational Science, vol. 2, no. 9, pp. 567–576, Sep. 2022, number: 9 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s43588-022-00311-3
- J.-S. Chen, E. Nielsen, M. Ebert, V. Inlek, K. Wright, V. Chaplin, A. Maksymov, E. Páez, A. Poudel, P. Maunz, and J. Gamble, “Benchmarking a trapped-ion quantum computer with 29 algorithmic qubits,” Aug. 2023, arXiv:2308.05071 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2308.05071
- J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett., vol. 74, pp. 4091–4094, May 1995. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.74.4091
- A. Cowtan, S. Dilkes, R. Duncan, W. Simmons, and S. Sivarajah, “Phase gadget synthesis for shallow circuits,” Electronic Proceedings in Theoretical Computer Science, vol. 318, p. 213–228, May 2020. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.318.13
- A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, “Validating quantum computers using randomized model circuits,” Physical Review A, vol. 100, no. 3, p. 032328, Sep. 2019, arXiv:1811.12926 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1811.12926
- M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, and C. Iancu, “Towards optimal topology aware quantum circuit synthesis,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), 2020, pp. 223–234.
- C. Developers, “Cirq,” Jul. 2023. [Online]. Available: https://doi.org/10.5281/zenodo.8161252
- A. Erhard, J. J. Wallman, L. Postler, M. Meth, R. Stricker, E. A. Martinez, P. Schindler, T. Monz, J. Emerson, and R. Blatt, “Characterizing large-scale quantum computers via cycle benchmarking,” Nature Communications, vol. 10, no. 1, nov 2019. [Online]. Available: https://doi.org/10.1038%2Fs41467-019-13068-7
- E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm,” Nov. 2014, arXiv:1411.4028 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1411.4028
- D. Herman, C. Googin, X. Liu, A. Galda, I. Safro, Y. Sun, M. Pistoia, and Y. Alexeev, “A Survey of Quantum Computing for Finance,” Jun. 2022, arXiv:2201.02773 [quant-ph, q-fin]. [Online]. Available: http://arxiv.org/abs/2201.02773
- P. Horodecki, M. Horodecki, and R. Horodecki, “General teleportation channel, singlet fraction and quasi-distillation,” Mar. 1999, arXiv:quant-ph/9807091. [Online]. Available: http://arxiv.org/abs/quant-ph/9807091
- IonQ Staff, “IonQ Forte: The First Software-Configurable Quantum Computer.” [Online]. Available: https://ionq.com/resources/ionq-forte-first-configurable-quantum-computer
- D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett., vol. 85, pp. 2208–2211, Sep 2000. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.85.2208
- Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme, and A. Kandala, “Evidence for the utility of quantum computing before fault tolerance,” Nature, vol. 618, no. 7965, pp. 500–505, Jun. 2023, number: 7965 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41586-023-06096-3
- E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Randomized Benchmarking of Quantum Gates,” Physical Review A, vol. 77, no. 1, p. 012307, Jan. 2008, arXiv:0707.0963 [quant-ph]. [Online]. Available: http://arxiv.org/abs/0707.0963
- G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for nisq-era quantum devices,” 2019.
- G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, “On the Co-Design of Quantum Software and Hardware,” in Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communication, ser. NANOCOM ’21. New York, NY, USA: Association for Computing Machinery, Sep. 2021, pp. 1–7. [Online]. Available: https://dl.acm.org/doi/10.1145/3477206.3477464
- S. F. Lin, S. Sussman, C. Duckering, P. S. Mundada, J. M. Baker, R. S. Kumar, A. A. Houck, and F. T. Chong, “Let each quantum bit choose its basis gates,” in 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), 2022, pp. 1042–1058.
- J. Liu, E. Younis, M. Weiden, P. Hovland, J. Kubiatowicz, and C. Iancu, “Tackling the Qubit Mapping Problem with Permutation-Aware Synthesis,” May 2023, arXiv:2305.02939 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2305.02939
- E. Magesan, J. M. Gambetta, and J. Emerson, “Robust randomized benchmarking of quantum processes,” Physical Review Letters, vol. 106, no. 18, p. 180504, May 2011, arXiv:1009.3639 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1009.3639
- E. Magesan, J. M. Gambetta, and J. Emerson, “Characterizing Quantum Gates via Randomized Benchmarking,” Physical Review A, vol. 85, no. 4, p. 042311, Apr. 2012, arXiv:1109.6887 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1109.6887
- A. Mandviwalla, K. Ohshiro, and B. Ji, “Implementing Grover’s Algorithm on the IBM Quantum Computers,” in 2018 IEEE International Conference on Big Data (Big Data), Dec. 2018, pp. 2531–2537. [Online]. Available: https://ieeexplore.ieee.org/document/8622457
- J. R. McClean, I. D. Kivlichan, D. S. Steiger, Y. Cao, E. S. Fried, C. Gidney, T. Häner, V. Havlíček, Z. Jiang, M. Neeley, J. Romero, N. Rubin, N. P. D. Sawaya, K. Setia, S. Sim, W. Sun, K. Sung, and R. Babbush, “Openfermion: The electronic structure package for quantum computers,” 2017, cite arxiv:1710.07629. [Online]. Available: http://arxiv.org/abs/1710.07629
- M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Quantum circuits for general multiqubit gates,” Physical review letters, vol. 93, no. 13, p. 130502, 2004.
- M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical operation,” Physics Letters A, vol. 303, no. 4, pp. 249–252, oct 2002. [Online]. Available: https://doi.org/10.1016%2Fs0375-9601%2802%2901272-0
- L. B. Oftelie, R. V. Beeumen, E. Younis, E. Smith, C. Iancu, and W. A. de Jong, “Constant-depth circuits for dynamic simulations of materials on quantum computers,” Materials Theory, vol. 6, no. 1, mar 2022. [Online]. Available: https://doi.org/10.1186%2Fs41313-022-00043-x
- A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a quantum processor,” Nature Communications, vol. 5, no. 1, p. 4213, Jul. 2014, arXiv:1304.3061 [physics, physics:quant-ph]. [Online]. Available: http://arxiv.org/abs/1304.3061
- Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023.
- P. Rakyta and Z. Zimborás, “Efficient quantum gate decomposition via adaptive circuit compression,” 2022.
- H. Safi, K. Wintersperger, and W. Mauerer, “Influence of HW-SW-Co-Design on Quantum Computing Scalability,” Jun. 2023, arXiv:2306.04246 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2306.04246
- D. Shin, H. Hübener, U. De Giovannini, H. Jin, A. Rubio, and N. Park, “Phonon-driven spin-Floquet magneto-valleytronics in MoS2,” Nature Communications, vol. 9, no. 1, p. 638, Feb. 2018, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41467-018-02918-5
- S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, “t$|$ket$\rangle$ : A Retargetable Compiler for NISQ Devices,” Quantum Science and Technology, vol. 6, no. 1, p. 014003, Jan. 2021, arXiv:2003.10611 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2003.10611
- R. R. Tucci, “An introduction to cartan’s kak decomposition for qc programmers,” 2005.
- M. Weiden, E. Younis, J. Kalloor, J. Kubiatowicz, and C. Iancu, “Improving Quantum Circuit Synthesis with Machine Learning,” Jun. 2023, arXiv:2306.05622 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2306.05622
- E. Younis and C. Iancu, “Quantum Circuit Optimization and Transpilation via Parameterized Circuit Instantiation,” Jun. 2022, arXiv:2206.07885 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2206.07885
- E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, E. Smith, and USDOE, “Berkeley quantum synthesis toolkit (bqskit) v1,” 4 2021. [Online]. Available: https://www.osti.gov//servlets/purl/1785933
- J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Minimum construction of two-qubit quantum operations,” Physical Review Letters, vol. 93, no. 2, p. 020502, Jul. 2004, arXiv:quant-ph/0312193. [Online]. Available: http://arxiv.org/abs/quant-ph/0312193
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.