Sudden breakdown of effective field theory near cool Kerr-Newman black holes
Abstract: It was recently shown that (near-)extremal Kerr black holes are sensitive probes of small higher-derivative corrections to general relativity. In particular, these corrections produce diverging tidal forces on the horizon in the extremal limit. We show that adding a black hole charge makes this effect qualitatively stronger. Higher-derivative corrections to the Kerr-Newman solution produce tidal forces that scale inversely in the black hole temperature. We find that, unlike the Kerr case, for realistic values of the black hole charge large tidal forces can arise before quantum corrections due to the Schwarzian mode become important, so that the near-horizon behavior of the black hole is dictated by higher-derivative terms in the effective theory.
- G. T. Horowitz, M. Kolanowski, G. N. Remmen, and J. E. Santos, “Extremal Kerr Black Holes as Amplifiers of New Physics,” Phys. Rev. Lett. 131 (2023) 091402, arXiv:2303.07358 [hep-th].
- Y. Kats, L. Motl, and M. Padi, “Higher-order corrections to mass-charge relation of extremal black holes,” JHEP 12 (2007) 068, arXiv:hep-th/0606100.
- C. Cheung and G. N. Remmen, “Infrared Consistency and the Weak Gravity Conjecture,” JHEP 12 (2014) 087, arXiv:1407.7865 [hep-th].
- I. T. Drummond and S. J. Hathrell, “QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons,” Phys. Rev. D 22 (1980) 343.
- G. V. Dunne, “Heisenberg-Euler Effective Lagrangians: Basics and Extensions,” in From Fields to Strings: Circumnavigating Theoretical Physics: Ian Kogan Memorial Collection, Vol. 1, M. Shifman, A. Vainshtein, J. Wheater, and I. Kogan, eds., p. 445. World Scientific, 2005. arXiv:hep-th/0406216 [hep-th].
- F. Bastianelli, J. M. Davila, and C. Schubert, “Gravitational corrections to the Euler-Heisenberg Lagrangian,” JHEP 03 (2009) 086, arXiv:0812.4849 [hep-th].
- F. Bastianelli, O. Corradini, J. M. Dávila, and C. Schubert, “On the low-energy limit of one-loop photon-graviton amplitudes,” Phys. Lett. B 716 (2012) 345, arXiv:1202.4502 [hep-th].
- W. Heisenberg and H. Euler, “Consequences of Dirac’s Theory of Positrons,” Z.Phys. 98 (1936) 714, arXiv:physics/0605038 [physics].
- R. M. Wald, “Black hole in a uniform magnetic field,” Phys. Rev. D 10 (1974) 1680.
- M. Zajaček and A. Tursunov, “Electric charge of black holes: Is it really always negligible?,” arXiv:1904.04654 [astro-ph.GA].
- J. Levin, D. J. D’Orazio, and S. Garcia-Saenz, “Black Hole Pulsar,” Phys. Rev. D 98 (2018) 123002, arXiv:1808.07887 [astro-ph.HE].
- I. Rakic, M. Rangamani, and G. J. Turiaci, “Thermodynamics of the near-extremal Kerr spacetime,” arXiv:2310.04532 [hep-th].
- D. Kapec, A. Sheta, A. Strominger, and C. Toldo, “Logarithmic Corrections to Kerr Thermodynamics,” arXiv:2310.00848 [hep-th].
- L. V. Iliesiu and G. J. Turiaci, “The statistical mechanics of near-extremal black holes,” JHEP 05 (2021) 145, arXiv:2003.02860 [hep-th].
- N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, “The string landscape, black holes and gravity as the weakest force,” JHEP 06 (2007) 060, arXiv:hep-th/0601001.
- C. Cheung, J. Liu, and G. N. Remmen, “Proof of the Weak Gravity Conjecture from Black Hole Entropy,” JHEP 10 (2018) 004, arXiv:1801.08546 [hep-th].
- C. Cheung, J. Liu, and G. N. Remmen, “Entropy Bounds on Effective Field Theory from Rotating Dyonic Black Holes,” Phys. Rev. D 100 (2019) 046003, arXiv:1903.09156 [hep-th].
- N. Arkani-Hamed, Y.-t. Huang, J.-Y. Liu, and G. N. Remmen, “Causality, unitarity, and the weak gravity conjecture,” JHEP 03 (2022) 083, arXiv:2109.13937 [hep-th].
- Y. Hamada, T. Noumi, and G. Shiu, “Weak Gravity Conjecture from Unitarity and Causality,” Phys. Rev. Lett. 123 (2019) 051601, arXiv:1810.03637 [hep-th].
- L. Aalsma and G. Shiu, “From rotating to charged black holes and back again,” JHEP 11 (2022) 161, arXiv:2205.06273 [hep-th].
- F. Della Valle, E. Milotti, A. Ejlli, G. Messineo, L. Piemontese, G. Zavattini, U. Gastaldi, R. Pengo, and G. Ruoso, “First results from the new PVLAS apparatus: A new limit on vacuum magnetic birefringence,” Phys. Rev. D 90 (2014) 092003, arXiv:1406.6518 [quant-ph].
- M. Fouché, R. Battesti, and C. Rizzo, “Limits on nonlinear electrodynamics,” Phys. Rev. D 93 (2016) 093020, arXiv:1605.04102 [physics.optics]. [Erratum: Phys. Rev. D 95 (2017) 099902].
- J. Preskill, “Quantum hair,” Phys. Scripta T36 (1991) 258.
- C. Cheung and G. N. Remmen, “Naturalness and the Weak Gravity Conjecture,” Phys. Rev. Lett. 113 (2014) 051601, arXiv:1402.2287 [hep-ph].
- J. Heeck, “Unbroken B−L𝐵𝐿B-Litalic_B - italic_L symmetry,” Phys. Lett. B 739 (2014) 256, arXiv:1408.6845 [hep-ph].
- G. T. Horowitz, M. Kolanowski, and J. E. Santos, “Almost all extremal black holes in AdS are singular,” JHEP 01 (2023) 162, arXiv:2210.02473 [hep-th].
- S. Deser and P. van Nieuwenhuizen, “One Loop Divergences of Quantized Einstein-Maxwell Fields,” Phys. Rev. D 10 (1974) 401.
- E. T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash, and R. Torrence, “Metric of a Rotating, Charged Mass,” J. Math. Phys. 6 (1965) 918.
- S. W. Hawking, “Black hole explosions,” Nature 248 (1974) 30.
- R. M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D 48 (1993) R3427, arXiv:gr-qc/9307038.
- J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7 (1973) 2333.
- S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43 (1975) 199. [Erratum: Commun. Math. Phys. 46 (1976) 206].
- J. M. Bardeen and G. T. Horowitz, “Extreme Kerr throat geometry: A vacuum analog of AdS2×S2subscriptAdS2superscript𝑆2{\rm AdS}_{2}\times S^{2}roman_AdS start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT,” Phys. Rev. D 60 (1999) 104030, arXiv:hep-th/9905099.
- T. Hartman, K. Murata, T. Nishioka, and A. Strominger, “CFT Duals for Extreme Black Holes,” JHEP 04 (2009) 019, arXiv:0811.4393 [hep-th].
- H. K. Kunduri and J. Lucietti, “Classification of near-horizon geometries of extremal black holes,” Living Rev. Rel. 16 (2013) 8, arXiv:1306.2517 [hep-th].
- S. Hadar, A. Lupsasca, and A. P. Porfyriadis, “Extreme Black Hole Anabasis,” JHEP 03 (2021) 223, arXiv:2012.06562 [hep-th].
- A. P. Porfyriadis and G. N. Remmen, “Large diffeomorphisms and accidental symmetry of the extremal horizon,” JHEP 03 (2022) 107, arXiv:2112.13853 [hep-th].
- P. Charalambous, S. Dubovsky, and M. M. Ivanov, “Love symmetry,” JHEP 10 (2022) 175, arXiv:2209.02091 [hep-th].
- A. P. Porfyriadis and G. N. Remmen, “Horizon acoustics of the GHS black hole and the spectrum of AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 10 (2021) 142, arXiv:2106.10282 [hep-th].
- T. Regge and J. A. Wheeler, “Stability of a Schwarzschild singularity,” Phys. Rev. 108 (1957) 1063.
- F. J. Zerilli, “Effective potential for even parity Regge-Wheeler gravitational perturbation equations,” Phys. Rev. Lett. 24 (1970) 737.
- F. J. Zerilli, “Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordström geometry,” Phys. Rev. D 9 (1974) 860.
- R. H. Boyer and R. W. Lindquist, “Maximal analytic extension of the Kerr metric,” J. Math. Phys. 8 (1967) 265.
- T. Wiseman, “Static axisymmetric vacuum solutions and nonuniform black strings,” Class. Quant. Grav. 20 (2003) 1137, arXiv:hep-th/0209051.
- O. J. C. Dias, J. E. Santos, and B. Way, “Numerical Methods for Finding Stationary Gravitational Solutions,” Class. Quant. Grav. 33 (2016) 133001, arXiv:1510.02804 [hep-th].
- S. W. Hawking, “Black holes in general relativity,” Commun. Math. Phys. 25 (1972) 152.
- S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1973.
- S. Hollands, A. Ishibashi, and R. M. Wald, “A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric,” Commun. Math. Phys. 271 (2007) 699, arXiv:gr-qc/0605106.
- H. S. Reall and J. E. Santos, “Higher derivative corrections to Kerr black hole thermodynamics,” JHEP 04 (2019) 021, arXiv:1901.11535 [hep-th].
- S. Hadar and H. S. Reall, “Is there a breakdown of effective field theory at the horizon of an extremal black hole?,” JHEP 12 (2017) 062, arXiv:1709.09668 [hep-th].
- K. S. Thorne, “Disk-Accretion onto a Black Hole. II. Evolution of the Hole,” Astrophys. J. 191 (1974) 507.
- S. S. Komissarov, “Electrically charged black holes and the Blandford–Znajek mechanism,” Mon. Not. Roy. Astron. Soc. 512 (2022) 2798, arXiv:2108.08161 [astro-ph.HE].
- V. M. Kaspi and A. Beloborodov, “Magnetars,” Ann. Rev. Astron. Astrophys. 55 (2017) 261, arXiv:1703.00068 [astro-ph.HE].
- R. Raynaud, J. Guilet, H.-T. Janka, and T. Gastine, “Magnetar formation through a convective dynamo in protoneutron stars,” Sci. Adv. 6 (2020) eaay2732, arXiv:2003.06662 [astro-ph.HE].
- I. Huet, M. Rausch de Traubenberg, and C. Schubert, “The Euler-Heisenberg Lagrangian Beyond One Loop,” Int. J. Mod. Phys. Conf. Ser. 14 (2012) 383, arXiv:1112.1049 [hep-th].
- C. Cheung and M. P. Solon, “Tidal Effects in the Post-Minkowskian Expansion,” Phys. Rev. Lett. 125 (2020) 191601, arXiv:2006.06665 [hep-th].
- R. Penrose, “Any Space-Time has a Plane Wave as a Limit,” in Differential Geometry and Relativity, M. Cahen and M. Flato, eds., p. 271. D. Reidel Publishing Company, 1976.
- H. J. de Vega and N. G. Sanchez, “Strings falling into spacetime singularities,” Phys. Rev. D 45 (1992) 2783.
- I. Booth, M. Hunt, A. Palomo-Lozano, and H. K. Kunduri, “Insights from Melvin-Kerr-Newman spacetimes,” Class. Quant. Grav. 32 (2015) 235025, arXiv:1502.07388 [gr-qc].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.