Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Retrieval-Augmented Generation for AI-Generated Content: A Survey (2402.19473v6)

Published 29 Feb 2024 in cs.CV
Retrieval-Augmented Generation for AI-Generated Content: A Survey

Abstract: Advancements in model algorithms, the growth of foundational models, and access to high-quality datasets have propelled the evolution of Artificial Intelligence Generated Content (AIGC). Despite its notable successes, AIGC still faces hurdles such as updating knowledge, handling long-tail data, mitigating data leakage, and managing high training and inference costs. Retrieval-Augmented Generation (RAG) has recently emerged as a paradigm to address such challenges. In particular, RAG introduces the information retrieval process, which enhances the generation process by retrieving relevant objects from available data stores, leading to higher accuracy and better robustness. In this paper, we comprehensively review existing efforts that integrate RAG technique into AIGC scenarios. We first classify RAG foundations according to how the retriever augments the generator, distilling the fundamental abstractions of the augmentation methodologies for various retrievers and generators. This unified perspective encompasses all RAG scenarios, illuminating advancements and pivotal technologies that help with potential future progress. We also summarize additional enhancements methods for RAG, facilitating effective engineering and implementation of RAG systems. Then from another view, we survey on practical applications of RAG across different modalities and tasks, offering valuable references for researchers and practitioners. Furthermore, we introduce the benchmarks for RAG, discuss the limitations of current RAG systems, and suggest potential directions for future research. Github: https://github.com/PKU-DAIR/RAG-Survey.

Comprehensive Survey on Retrieval-Augmented Generation for AI-Generated Content

Introduction to Retrieval-Augmented Generation (RAG)

In the landscape of Artificial Intelligence Generated Content (AIGC), Retrieval-Augmented Generation (RAG) has emerged as a pivotal paradigm, aiming to enhance generative models' performance by incorporating relevant external information through retrieval mechanisms. Despite its substantial impact across various modalities and tasks, a holistic review on the foundational strategies, enhancements, applications, and benchmarks of RAG has been notably absent. This survey endeavors to bridge this gap by providing an exhaustive overview of RAG's development, underscoring its methodologies, enhancements, diverse applications, and potential future directions.

Methodologies in RAG

RAG methodologies can be broadly classified into four main paradigms based on how the information retrieval process augments the generation:

  • Query-based RAG: Often known as prompt augmentation, where retrieved information is directly integrated into the initial stage of the generation input.
  • Latent Representation-based RAG: Centers on the interaction between generative models and the latent representations of retrieved objects to improve content quality during generation.
  • Logit-based RAG: Focuses on combining information from the retrieval process at the logit (the inputs to the final softmax function) level during the generation sequence.
  • Speculative RAG: Utilizes retrieval to potentially replace certain generation steps, aiming at saving resources and enhancing response speeds.

Enhancements in RAG

The enhancements in RAG are aimed at elevating the efficiency and effectiveness of the RAG pipeline, which includes:

  • Input Enhancement: Techniques such as query transformation and data augmentation to refine the initial input for better retrieval results.
  • Retriever Enhancement: Strategies like recursive retrieval, chunk optimization, and finetuning the retriever to improve the quality and relevance of retrieved content.
  • Generator Enhancement: Incorporating methods such as prompt engineering and decoding tuning to enrich the generator's capacity to produce high-quality output.
  • Result Enhancement: Techniques like rewrite output that ensure the final generated content is more accurate and factually correct.
  • RAG Pipeline Enhancement: Approaches aimed at optimizing the entire RAG pipeline, including adaptive retrieval and iterative RAG for efficient processing and improved results.

Applications of RAG

RAG's adaptability makes it applicable across a wide range of domains and tasks, including but not limited to text, code, audio, image, video, 3D content generation, and knowledge incorporation. Each of these applications demonstrates RAG's ability to significantly improve content relevancy, accuracy, and overall quality by leveraging additional external information retrieved in real-time.

Benchmarks and Current Limitations

RAG systems are evaluated across several benchmarks that measure aspects such as noise robustness, negative rejection, and information integration. Various limitations still pose challenges, including noises in retrieval results, extra overhead, and the intricacies in the interaction between retrieval and generation components. Moreover, restrictions related to long context generation present additional obstacles to be addressed.

Future Directions

The future development of RAG could focus on more advanced research methodologies, efficient deployment and processing, incorporating long-tail and real-time knowledge, and combining RAG with other techniques to enhance generative models further.

Conclusion

As RAG continues to evolve, its capabilities in enhancing the quality of AIGC are undeniable. By addressing its current limitations and exploring new enhancements and applications, RAG stands to significantly contribute to the advancement of AIGC across a plethora of domains, marking an exciting phase in the development of intelligent generative models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (261)
  1. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
  2. M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating large language models trained on code,” CoRR, vol. abs/2107.03374, 2021. [Online]. Available: https://arxiv.org/abs/2107.03374
  3. OpenAI, “GPT-4 technical report,” CoRR, vol. abs/2303.08774, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2303.08774
  4. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient foundation language models,” CoRR, vol. abs/2302.13971, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.13971
  5. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton-Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,” CoRR, vol. abs/2307.09288, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2307.09288
  6. B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton, M. Bhatt, C. Canton-Ferrer, A. Grattafiori, W. Xiong, A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and G. Synnaeve, “Code llama: Open foundation models for code,” CoRR, vol. abs/2308.12950, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2308.12950
  7. A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever, “Zero-shot text-to-image generation,” in Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139.   PMLR, 2021, pp. 8821–8831. [Online]. Available: http://proceedings.mlr.press/v139/ramesh21a.html
  8. A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with CLIP latents,” CoRR, vol. abs/2204.06125, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2204.06125
  9. J. Betker, G. Goh, L. Jing, T. Brooks, J. Wang, L. Li, L. Ouyang, J. Zhuang, J. Lee, Y. Guo et al., “Improving image generation with better captions,” Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf, vol. 2, no. 3, p. 8, 2023.
  10. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022.   IEEE, 2022, pp. 10 674–10 685. [Online]. Available: https://doi.org/10.1109/CVPR52688.2022.01042
  11. OpenAI, “Video generation models as world simulators,” https://openai.com/research/video-generation-models-as-world-simulators, 2024.
  12. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available: https://doi.org/10.1162/neco.1997.9.8.1735
  13. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp. 5998–6008. [Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
  14. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial networks,” Commun. ACM, vol. 63, no. 11, pp. 139–144, 2020. [Online]. Available: https://doi.org/10.1145/3422622
  15. J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds.   Association for Computational Linguistics, 2019, pp. 4171–4186. [Online]. Available: https://doi.org/10.18653/v1/n19-1423
  16. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21, pp. 140:1–140:67, 2020. [Online]. Available: http://jmlr.org/papers/v21/20-074.html
  17. J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models,” CoRR, vol. abs/2001.08361, 2020. [Online]. Available: https://arxiv.org/abs/2001.08361
  18. S. E. Robertson and H. Zaragoza, “The probabilistic relevance framework: BM25 and beyond,” Found. Trends Inf. Retr., vol. 3, no. 4, pp. 333–389, 2009. [Online]. Available: https://doi.org/10.1561/1500000019
  19. V. Karpukhin, B. Oguz, S. Min, P. S. H. Lewis, L. Wu, S. Edunov, D. Chen, and W. Yih, “Dense passage retrieval for open-domain question answering,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, B. Webber, T. Cohn, Y. He, and Y. Liu, Eds.   Association for Computational Linguistics, 2020, pp. 6769–6781. [Online]. Available: https://doi.org/10.18653/v1/2020.emnlp-main.550
  20. J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with gpus,” IEEE Trans. Big Data, vol. 7, no. 3, pp. 535–547, 2021. [Online]. Available: https://doi.org/10.1109/TBDATA.2019.2921572
  21. Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li, M. Yang, and J. Wang, “SPANN: highly-efficient billion-scale approximate nearest neighborhood search,” in Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021, pp. 5199–5212. [Online]. Available: https://proceedings.neurips.cc/paper/2021/hash/299dc35e747eb77177d9cea10a802da2-Abstract.html
  22. R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval: Ideas, influences, and trends of the new age,” ACM Comput. Surv., vol. 40, no. 2, pp. 5:1–5:60, 2008. [Online]. Available: https://doi.org/10.1145/1348246.1348248
  23. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” in International conference on machine learning.   PMLR, 2021, pp. 8748–8763.
  24. Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for programming and natural languages,” in Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November 2020, ser. Findings of ACL, T. Cohn, Y. He, and Y. Liu, Eds., vol. EMNLP 2020.   Association for Computational Linguistics, 2020, pp. 1536–1547. [Online]. Available: https://doi.org/10.18653/v1/2020.findings-emnlp.139
  25. Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick, and S. Dubnov, “Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption augmentation,” in IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2023, Rhodes Island, Greece, June 4-10, 2023.   IEEE, 2023, pp. 1–5. [Online]. Available: https://doi.org/10.1109/ICASSP49357.2023.10095969
  26. A. Mallen, A. Asai, V. Zhong, R. Das, D. Khashabi, and H. Hajishirzi, “When not to trust language models: Investigating effectiveness of parametric and non-parametric memories,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds.   Association for Computational Linguistics, 2023, pp. 9802–9822. [Online]. Available: https://doi.org/10.18653/v1/2023.acl-long.546
  27. N. Carlini, F. Tramèr, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. B. Brown, D. Song, Ú. Erlingsson, A. Oprea, and C. Raffel, “Extracting training data from large language models,” in 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, M. D. Bailey and R. Greenstadt, Eds.   USENIX Association, 2021, pp. 2633–2650. [Online]. Available: https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
  28. G. Izacard, P. S. H. Lewis, M. Lomeli, L. Hosseini, F. Petroni, T. Schick, J. Dwivedi-Yu, A. Joulin, S. Riedel, and E. Grave, “Atlas: Few-shot learning with retrieval augmented language models,” J. Mach. Learn. Res., vol. 24, pp. 251:1–251:43, 2023. [Online]. Available: http://jmlr.org/papers/v24/23-0037.html
  29. Y. Wu, M. N. Rabe, D. Hutchins, and C. Szegedy, “Memorizing transformers,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.   OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=TrjbxzRcnf-
  30. Z. He, Z. Zhong, T. Cai, J. D. Lee, and D. He, “REST: retrieval-based speculative decoding,” CoRR, vol. abs/2311.08252, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2311.08252
  31. K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang, “REALM: retrieval-augmented language model pre-training,” CoRR, vol. abs/2002.08909, 2020. [Online]. Available: https://arxiv.org/abs/2002.08909
  32. P. S. H. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel, and D. Kiela, “Retrieval-augmented generation for knowledge-intensive NLP tasks,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
  33. G. Izacard and E. Grave, “Leveraging passage retrieval with generative models for open domain question answering,” in Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, P. Merlo, J. Tiedemann, and R. Tsarfaty, Eds.   Association for Computational Linguistics, 2021, pp. 874–880. [Online]. Available: https://doi.org/10.18653/v1/2021.eacl-main.74
  34. S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. van den Driessche, J. Lespiau, B. Damoc, A. Clark, D. de Las Casas, A. Guy, J. Menick, R. Ring, T. Hennigan, S. Huang, L. Maggiore, C. Jones, A. Cassirer, A. Brock, M. Paganini, G. Irving, O. Vinyals, S. Osindero, K. Simonyan, J. W. Rae, E. Elsen, and L. Sifre, “Improving language models by retrieving from trillions of tokens,” in International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, ser. Proceedings of Machine Learning Research, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S. Sabato, Eds., vol. 162.   PMLR, 2022, pp. 2206–2240. [Online]. Available: https://proceedings.mlr.press/v162/borgeaud22a.html
  35. U. Khandelwal, O. Levy, D. Jurafsky, L. Zettlemoyer, and M. Lewis, “Generalization through memorization: Nearest neighbor language models,” in 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.   OpenReview.net, 2020. [Online]. Available: https://openreview.net/forum?id=HklBjCEKvH
  36. J. He, G. Neubig, and T. Berg-Kirkpatrick, “Efficient nearest neighbor language models,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.   Association for Computational Linguistics, 2021, pp. 5703–5714. [Online]. Available: https://doi.org/10.18653/v1/2021.emnlp-main.461
  37. zilliztech. (2023) Gptcache. [Online]. Available: https://github.com/zilliztech/GPTCache
  38. M. R. Parvez, W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “Retrieval augmented code generation and summarization,” in Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.   Association for Computational Linguistics, 2021, pp. 2719–2734. [Online]. Available: https://doi.org/10.18653/v1/2021.findings-emnlp.232
  39. W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “Unified pre-training for program understanding and generation,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tür, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds.   Association for Computational Linguistics, 2021, pp. 2655–2668. [Online]. Available: https://doi.org/10.18653/v1/2021.naacl-main.211
  40. S. Zhou, U. Alon, F. F. Xu, Z. Jiang, and G. Neubig, “Docprompting: Generating code by retrieving the docs,” in The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.   OpenReview.net, 2023. [Online]. Available: https://openreview.net/pdf?id=ZTCxT2t2Ru
  41. Y. Koizumi, Y. Ohishi, D. Niizumi, D. Takeuchi, and M. Yasuda, “Audio captioning using pre-trained large-scale language model guided by audio-based similar caption retrieval,” CoRR, vol. abs/2012.07331, 2020. [Online]. Available: https://arxiv.org/abs/2012.07331
  42. R. Huang, J. Huang, D. Yang, Y. Ren, L. Liu, M. Li, Z. Ye, J. Liu, X. Yin, and Z. Zhao, “Make-an-audio: Text-to-audio generation with prompt-enhanced diffusion models,” in International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, ser. Proceedings of Machine Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202.   PMLR, 2023, pp. 13 916–13 932. [Online]. Available: https://proceedings.mlr.press/v202/huang23i.html
  43. H.-Y. Tseng, H.-Y. Lee, L. Jiang, M.-H. Yang, and W. Yang, “Retrievegan: Image synthesis via differentiable patch retrieval,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16.   Springer, 2020, pp. 242–257.
  44. S. Sarto, M. Cornia, L. Baraldi, and R. Cucchiara, “Retrieval-augmented transformer for image captioning,” in Proceedings of the 19th International Conference on Content-based Multimedia Indexing, 2022, pp. 1–7.
  45. R. Ramos, B. Martins, D. Elliott, and Y. Kementchedjhieva, “Smallcap: lightweight image captioning prompted with retrieval augmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 2840–2849.
  46. J. Chen, Y. Pan, Y. Li, T. Yao, H. Chao, and T. Mei, “Retrieval augmented convolutional encoder-decoder networks for video captioning,” ACM Trans. Multim. Comput. Commun. Appl., vol. 19, no. 1s, pp. 48:1–48:24, 2023. [Online]. Available: https://doi.org/10.1145/3539225
  47. J. Xu, Y. Huang, J. Hou, G. Chen, Y. Zhang, R. Feng, and W. Xie, “Retrieval-augmented egocentric video captioning,” CoRR, vol. abs/2401.00789, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.00789
  48. J. Seo, S. Hong, W. Jang, I. H. Kim, M. Kwak, D. Lee, and S. Kim, “Retrieval-augmented score distillation for text-to-3d generation,” CoRR, vol. abs/2402.02972, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2402.02972
  49. M. Zhang, X. Guo, L. Pan, Z. Cai, F. Hong, H. Li, L. Yang, and Z. Liu, “Remodiffuse: Retrieval-augmented motion diffusion model,” in IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023.   IEEE, 2023, pp. 364–373. [Online]. Available: https://doi.org/10.1109/ICCV51070.2023.00040
  50. X. Hu, X. Wu, Y. Shu, and Y. Qu, “Logical form generation via multi-task learning for complex question answering over knowledge bases,” in Proceedings of the 29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17, 2022, N. Calzolari, C. Huang, H. Kim, J. Pustejovsky, L. Wanner, K. Choi, P. Ryu, H. Chen, L. Donatelli, H. Ji, S. Kurohashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K. Lee, E. Santus, F. Bond, and S. Na, Eds.   International Committee on Computational Linguistics, 2022, pp. 1687–1696. [Online]. Available: https://aclanthology.org/2022.coling-1.145
  51. X. Huang, J. Kim, and B. Zou, “Unseen entity handling in complex question answering over knowledge base via language generation,” in Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.   Association for Computational Linguistics, 2021, pp. 547–557. [Online]. Available: https://doi.org/10.18653/v1/2021.findings-emnlp.50
  52. R. Das, M. Zaheer, D. Thai, A. Godbole, E. Perez, J. Y. Lee, L. Tan, L. Polymenakos, and A. McCallum, “Case-based reasoning for natural language queries over knowledge bases,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.   Association for Computational Linguistics, 2021, pp. 9594–9611. [Online]. Available: https://doi.org/10.18653/v1/2021.emnlp-main.755
  53. Z. Wang, W. Nie, Z. Qiao, C. Xiao, R. Baraniuk, and A. Anandkumar, “Retrieval-based controllable molecule generation,” in The Eleventh International Conference on Learning Representations, 2022.
  54. Q. Jin, Y. Yang, Q. Chen, and Z. Lu, “Genegpt: Augmenting large language models with domain tools for improved access to biomedical information,” ArXiv, 2023.
  55. H. Li, Y. Su, D. Cai, Y. Wang, and L. Liu, “A survey on retrieval-augmented text generation,” CoRR, vol. abs/2202.01110, 2022. [Online]. Available: https://arxiv.org/abs/2202.01110
  56. A. Asai, S. Min, Z. Zhong, and D. Chen, “Acl 2023 tutorial: Retrieval-based language models and applications,” ACL 2023, 2023.
  57. Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, Q. Guo, M. Wang, and H. Wang, “Retrieval-augmented generation for large language models: A survey,” CoRR, vol. abs/2312.10997, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2312.10997
  58. R. Zhao, H. Chen, W. Wang, F. Jiao, D. X. Long, C. Qin, B. Ding, X. Guo, M. Li, X. Li, and S. Joty, “Retrieving multimodal information for augmented generation: A survey,” in Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds.   Association for Computational Linguistics, 2023, pp. 4736–4756. [Online]. Available: https://aclanthology.org/2023.findings-emnlp.314
  59. J. Chen, H. Guo, K. Yi, B. Li, and M. Elhoseiny, “Visualgpt: Data-efficient adaptation of pretrained language models for image captioning,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022.   IEEE, 2022, pp. 18 009–18 019. [Online]. Available: https://doi.org/10.1109/CVPR52688.2022.01750
  60. Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers: A survey,” ACM Comput. Surv., vol. 55, no. 6, pp. 109:1–109:28, 2023. [Online]. Available: https://doi.org/10.1145/3530811
  61. G. V. Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-term memory model,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5929–5955, 2020. [Online]. Available: https://doi.org/10.1007/s10462-020-09838-1
  62. L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey of methods and applications,” ACM Computing Surveys, vol. 56, no. 4, pp. 1–39, 2023.
  63. J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in International conference on machine learning.   PMLR, 2015, pp. 2256–2265.
  64. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
  65. A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in International Conference on Machine Learning.   PMLR, 2021, pp. 8162–8171.
  66. Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” Advances in neural information processing systems, vol. 32, 2019.
  67. Song, Yang and Ermon, Stefano, “Improved techniques for training score-based generative models,” Advances in neural information processing systems, vol. 33, pp. 12 438–12 448, 2020.
  68. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456, 2020.
  69. Y. Song, C. Durkan, I. Murray, and S. Ermon, “Maximum likelihood training of score-based diffusion models,” Advances in Neural Information Processing Systems, vol. 34, pp. 1415–1428, 2021.
  70. L. Yang, H. Qian, Z. Zhang, J. Liu, and B. Cui, “Structure-guided adversarial training of diffusion models,” arXiv preprint arXiv:2402.17563, 2024.
  71. X. Zhang, L. Yang, Y. Cai, Z. Yu, J. Xie, Y. Tian, M. Xu, Y. Tang, Y. Yang, and B. Cui, “Realcompo: Dynamic equilibrium between realism and compositionality improves text-to-image diffusion models,” arXiv preprint arXiv:2402.12908, 2024.
  72. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” 2021.
  73. A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with clip latents,” arXiv preprint arXiv:2204.06125, vol. 1, no. 2, p. 3, 2022.
  74. H. Li, Y. Yang, M. Chang, S. Chen, H. Feng, Z. Xu, Q. Li, and Y. Chen, “Srdiff: Single image super-resolution with diffusion probabilistic models,” Neurocomputing, vol. 479, pp. 47–59, 2022.
  75. J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, “Cascaded diffusion models for high fidelity image generation,” The Journal of Machine Learning Research, vol. 23, no. 1, pp. 2249–2281, 2022.
  76. L. Yang, J. Liu, S. Hong, Z. Zhang, Z. Huang, Z. Cai, W. Zhang, and B. Cui, “Improving diffusion-based image synthesis with context prediction,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  77. L. Yang, Z. Yu, C. Meng, M. Xu, S. Ermon, and B. Cui, “Mastering text-to-image diffusion: Recaptioning, planning, and generating with multimodal llms,” arXiv preprint arXiv:2401.11708, 2024.
  78. S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong, “Diffuseq: Sequence to sequence text generation with diffusion models,” arXiv preprint arXiv:2210.08933, 2022.
  79. X. Li, J. Thickstun, I. Gulrajani, P. S. Liang, and T. B. Hashimoto, “Diffusion-lm improves controllable text generation,” Advances in Neural Information Processing Systems, vol. 35, pp. 4328–4343, 2022.
  80. J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg, “Structured denoising diffusion models in discrete state-spaces,” Advances in Neural Information Processing Systems, vol. 34, pp. 17 981–17 993, 2021.
  81. T. Chen, R. Zhang, and G. Hinton, “Analog bits: Generating discrete data using diffusion models with self-conditioning,” arXiv preprint arXiv:2208.04202, 2022.
  82. J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole, M. Norouzi, D. J. Fleet et al., “Imagen video: High definition video generation with diffusion models,” arXiv preprint arXiv:2210.02303, 2022.
  83. W. Harvey, S. Naderiparizi, V. Masrani, C. Weilbach, and F. Wood, “Flexible diffusion modeling of long videos,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 953–27 965, 2022.
  84. R. Yang, P. Srivastava, and S. Mandt, “Diffusion probabilistic modeling for video generation,” Entropy, vol. 25, no. 10, p. 1469, 2023.
  85. M. Zhang, Z. Cai, L. Pan, F. Hong, X. Guo, L. Yang, and Z. Liu, “Motiondiffuse: Text-driven human motion generation with diffusion model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
  86. L. Yang, Z. Zhang, Z. Yu, J. Liu, M. Xu, S. Ermon, and B. CUI, “Cross-modal contextualized diffusion models for text-guided visual generation and editing,” in International Conference on Learning Representations, 2024.
  87. N. Anand and T. Achim, “Protein structure and sequence generation with equivariant denoising diffusion probabilistic models,” arXiv preprint arXiv:2205.15019, 2022.
  88. M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang, “Geodiff: A geometric diffusion model for molecular conformation generation,” arXiv preprint arXiv:2203.02923, 2022.
  89. E. Hoogeboom, V. G. Satorras, C. Vignac, and M. Welling, “Equivariant diffusion for molecule generation in 3d,” in International conference on machine learning.   PMLR, 2022, pp. 8867–8887.
  90. B. Jing, G. Corso, J. Chang, R. Barzilay, and T. Jaakkola, “Torsional diffusion for molecular conformer generation,” Advances in Neural Information Processing Systems, vol. 35, pp. 24 240–24 253, 2022.
  91. Z. Huang, L. Yang, X. Zhou, Z. Zhang, W. Zhang, X. Zheng, J. Chen, Y. Wang, B. CUI, and W. Yang, “Protein-ligand interaction prior for binding-aware 3d molecule diffusion models,” in International Conference on Learning Representations, 2024.
  92. J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv preprint arXiv:2010.02502, 2020.
  93. X. Liu, C. Gong, and Q. Liu, “Flow straight and fast: Learning to generate and transfer data with rectified flow,” arXiv preprint arXiv:2209.03003, 2022.
  94. Y. Song, P. Dhariwal, M. Chen, and I. Sutskever, “Consistency models,” arXiv preprint arXiv:2303.01469, 2023.
  95. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  96. J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative adversarial networks: Algorithms, theory, and applications,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 3313–3332, 2023. [Online]. Available: https://doi.org/10.1109/TKDE.2021.3130191
  97. S. E. Robertson and S. Walker, “On relevance weights with little relevance information,” in SIGIR ’97: Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, July 27-31, 1997, Philadelphia, PA, USA, N. J. Belkin, A. D. Narasimhalu, P. Willett, W. R. Hersh, F. Can, and E. M. Voorhees, Eds.   ACM, 1997, pp. 16–24. [Online]. Available: https://doi.org/10.1145/258525.258529
  98. J. D. Lafferty and C. Zhai, “Document language models, query models, and risk minimization for information retrieval,” in SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, September 9-13, 2001, New Orleans, Louisiana, USA, W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel, Eds.   ACM, 2001, pp. 111–119. [Online]. Available: https://doi.org/10.1145/383952.383970
  99. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT pretraining approach,” CoRR, vol. abs/1907.11692, 2019. [Online]. Available: http://arxiv.org/abs/1907.11692
  100. L. Xiong, C. Xiong, Y. Li, K. Tang, J. Liu, P. N. Bennett, J. Ahmed, and A. Overwijk, “Approximate nearest neighbor negative contrastive learning for dense text retrieval,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.   OpenReview.net, 2021. [Online]. Available: https://openreview.net/forum?id=zeFrfgyZln
  101. H. Zhang, Y. Gong, Y. Shen, J. Lv, N. Duan, and W. Chen, “Adversarial retriever-ranker for dense text retrieval,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.   OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=MR7XubKUFB
  102. Y. Qu, Y. Ding, J. Liu, K. Liu, R. Ren, W. X. Zhao, D. Dong, H. Wu, and H. Wang, “Rocketqa: An optimized training approach to dense passage retrieval for open-domain question answering,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tür, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds.   Association for Computational Linguistics, 2021, pp. 5835–5847. [Online]. Available: https://doi.org/10.18653/v1/2021.naacl-main.466
  103. L. Gao and J. Callan, “Condenser: a pre-training architecture for dense retrieval,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.   Association for Computational Linguistics, 2021, pp. 981–993. [Online]. Available: https://doi.org/10.18653/v1/2021.emnlp-main.75
  104. D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement, D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert: Pre-training code representations with data flow,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.   OpenReview.net, 2021. [Online]. Available: https://openreview.net/forum?id=jLoC4ez43PZ
  105. Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.   Association for Computational Linguistics, 2021, pp. 8696–8708. [Online]. Available: https://doi.org/10.18653/v1/2021.emnlp-main.685
  106. S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. J. Weiss, and K. W. Wilson, “CNN architectures for large-scale audio classification,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017.   IEEE, 2017, pp. 131–135. [Online]. Available: https://doi.org/10.1109/ICASSP.2017.7952132
  107. X. Yuan, Z. Lin, J. Kuen, J. Zhang, Y. Wang, M. Maire, A. Kale, and B. Faieta, “Multimodal contrastive training for visual representation learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 6995–7004.
  108. J. Dong, X. Li, C. Xu, S. Ji, Y. He, G. Yang, and X. Wang, “Dual encoding for zero-example video retrieval,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.   Computer Vision Foundation / IEEE, 2019, pp. 9346–9355. [Online]. Available: http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Dual_Encoding_for_Zero-Example_Video_Retrieval_CVPR_2019_paper.html
  109. M. Bain, A. Nagrani, G. Varol, and A. Zisserman, “Frozen in time: A joint video and image encoder for end-to-end retrieval,” in 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021.   IEEE, 2021, pp. 1708–1718. [Online]. Available: https://doi.org/10.1109/ICCV48922.2021.00175
  110. J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma, “Optimizing dense retrieval model training with hard negatives,” in Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021, pp. 1503–1512.
  111. J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.
  112. W. Li, C. Feng, D. Lian, Y. Xie, H. Liu, Y. Ge, and E. Chen, “Learning balanced tree indexes for large-scale vector retrieval,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 1353–1362.
  113. M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive hashing scheme based on p-stable distributions,” in Proceedings of the twentieth annual symposium on Computational geometry, 2004, pp. 253–262.
  114. Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs,” IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 4, pp. 824–836, 2018.
  115. S. Jayaram Subramanya, F. Devvrit, H. V. Simhadri, R. Krishnawamy, and R. Kadekodi, “Diskann: Fast accurate billion-point nearest neighbor search on a single node,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  116. J. Ren, M. Zhang, and D. Li, “Hm-ann: Efficient billion-point nearest neighbor search on heterogeneous memory,” Advances in Neural Information Processing Systems, vol. 33, pp. 10 672–10 684, 2020.
  117. Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li, M. Yang, and J. Wang, “Spann: Highly-efficient billion-scale approximate nearest neighborhood search,” Advances in Neural Information Processing Systems, vol. 34, pp. 5199–5212, 2021.
  118. S. A. Hayati, R. Olivier, P. Avvaru, P. Yin, A. Tomasic, and G. Neubig, “Retrieval-based neural code generation,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, Eds.   Association for Computational Linguistics, 2018, pp. 925–930. [Online]. Available: https://doi.org/10.18653/v1/d18-1111
  119. J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based neural source code summarization,” in ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, G. Rothermel and D. Bae, Eds.   ACM, 2020, pp. 1385–1397. [Online]. Available: https://doi.org/10.1145/3377811.3380383
  120. G. Poesia, A. Polozov, V. Le, A. Tiwari, G. Soares, C. Meek, and S. Gulwani, “Synchromesh: Reliable code generation from pre-trained language models,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.   OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=KmtVD97J43e
  121. X. Ye, S. Yavuz, K. Hashimoto, Y. Zhou, and C. Xiong, “RNG-KBQA: generation augmented iterative ranking for knowledge base question answering,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds.   Association for Computational Linguistics, 2022, pp. 6032–6043. [Online]. Available: https://doi.org/10.18653/v1/2022.acl-long.417
  122. Y. Shu, Z. Yu, Y. Li, B. F. Karlsson, T. Ma, Y. Qu, and C. Lin, “TIARA: multi-grained retrieval for robust question answering over large knowledge bases,” CoRR, vol. abs/2210.12925, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2210.12925
  123. M. Xu, H. Jiang, and S. Watcharawittayakul, “A local detection approach for named entity recognition and mention detection,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017, pp. 1237–1247.
  124. X. V. Lin, R. Socher, and C. Xiong, “Bridging textual and tabular data for cross-domain text-to-sql semantic parsing,” arXiv preprint arXiv:2012.12627, 2020.
  125. F. Petroni, A. Piktus, A. Fan, P. Lewis, M. Yazdani, N. De Cao, J. Thorne, Y. Jernite, V. Karpukhin, J. Maillard et al., “Kilt: a benchmark for knowledge intensive language tasks,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021, pp. 2523–2544.
  126. A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi, “Self-rag: Learning to retrieve, generate, and critique through self-reflection,” CoRR, vol. abs/2310.11511, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.11511
  127. W. Shi, S. Min, M. Yasunaga, M. Seo, R. James, M. Lewis, L. Zettlemoyer, and W.-t. Yih, “Replug: Retrieval-augmented black-box language models,” arXiv preprint arXiv:2301.12652, 2023.
  128. O. Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. Leyton-Brown, and Y. Shoham, “In-context retrieval-augmented language models,” arXiv preprint arXiv:2302.00083, 2023.
  129. D. Zan, B. Chen, Z. Lin, B. Guan, Y. Wang, and J. Lou, “When language model meets private library,” in Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.   Association for Computational Linguistics, 2022, pp. 277–288. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-emnlp.21
  130. N. Nashid, M. Sintaha, and A. Mesbah, “Retrieval-based prompt selection for code-related few-shot learning,” in 45th IEEE/ACM International Conference on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023.   IEEE, 2023, pp. 2450–2462. [Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00205
  131. M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan, and A. Svyatkovskiy, “Inferfix: End-to-end program repair with llms,” in Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San Francisco, CA, USA, December 3-9, 2023, S. Chandra, K. Blincoe, and P. Tonella, Eds.   ACM, 2023, pp. 1646–1656. [Online]. Available: https://doi.org/10.1145/3611643.3613892
  132. S. Lu, N. Duan, H. Han, D. Guo, S. Hwang, and A. Svyatkovskiy, “Reacc: A retrieval-augmented code completion framework,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds.   Association for Computational Linguistics, 2022, pp. 6227–6240. [Online]. Available: https://doi.org/10.18653/v1/2022.acl-long.431
  133. Y. Liu, S. Yavuz, R. Meng, D. Radev, C. Xiong, and Y. Zhou, “Uni-parser: Unified semantic parser for question answering on knowledge base and database,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.   Association for Computational Linguistics, 2022, pp. 8858–8869. [Online]. Available: https://doi.org/10.18653/v1/2022.emnlp-main.605
  134. Z. Yang, X. Du, E. Cambria, and C. Cardie, “End-to-end case-based reasoning for commonsense knowledge base completion,” in Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023, Dubrovnik, Croatia, May 2-6, 2023, A. Vlachos and I. Augenstein, Eds.   Association for Computational Linguistics, 2023, pp. 3491–3504. [Online]. Available: https://doi.org/10.18653/v1/2023.eacl-main.255
  135. M. Patidar, A. K. Singh, R. Sawhney, I. Bhattacharya, and Mausam, “Combining transfer learning with in-context learning using blackbox llms for zero-shot knowledge base question answering,” CoRR, vol. abs/2311.08894, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2311.08894
  136. W. Shi, Y. Zhuang, Y. Zhu, H. Iwinski, M. Wattenbarger, and M. D. Wang, “Retrieval-augmented large language models for adolescent idiopathic scoliosis patients in shared decision-making,” in Proceedings of the 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, 2023, pp. 1–10.
  137. A. Casanova, M. Careil, J. Verbeek, M. Drozdzal, and A. Romero Soriano, “Instance-conditioned gan,” Advances in Neural Information Processing Systems, vol. 34, pp. 27 517–27 529, 2021.
  138. J. Li, Y. Li, G. Li, X. Hu, X. Xia, and Z. Jin, “Editsum: A retrieve-and-edit framework for source code summarization,” in 36th IEEE/ACM International Conference on Automated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021.   IEEE, 2021, pp. 155–166. [Online]. Available: https://doi.org/10.1109/ASE51524.2021.9678724
  139. C. Yu, G. Yang, X. Chen, K. Liu, and Y. Zhou, “Bashexplainer: Retrieval-augmented bash code comment generation based on fine-tuned codebert,” in IEEE International Conference on Software Maintenance and Evolution, ICSME 2022, Limassol, Cyprus, October 3-7, 2022.   IEEE, 2022, pp. 82–93. [Online]. Available: https://doi.org/10.1109/ICSME55016.2022.00016
  140. T. B. Hashimoto, K. Guu, Y. Oren, and P. Liang, “A retrieve-and-edit framework for predicting structured outputs,” in Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018, pp. 10 073–10 083. [Online]. Available: https://proceedings.neurips.cc/paper/2018/hash/cd17d3ce3b64f227987cd92cd701cc58-Abstract.html
  141. E. Shi, Y. Wang, W. Tao, L. Du, H. Zhang, S. Han, D. Zhang, and H. Sun, “RACE: retrieval-augmented commit message generation,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.   Association for Computational Linguistics, 2022, pp. 5520–5530. [Online]. Available: https://doi.org/10.18653/v1/2022.emnlp-main.372
  142. B. Oguz, X. Chen, V. Karpukhin, S. Peshterliev, D. Okhonko, M. S. Schlichtkrull, S. Gupta, Y. Mehdad, and S. Yih, “Unik-qa: Unified representations of structured and unstructured knowledge for open-domain question answering,” in Findings of the Association for Computational Linguistics: NAACL 2022, Seattle, WA, United States, July 10-15, 2022, M. Carpuat, M. de Marneffe, and I. V. M. Ruíz, Eds.   Association for Computational Linguistics, 2022, pp. 1535–1546. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-naacl.115
  143. D. Yu, S. Zhang, P. Ng, H. Zhu, A. H. Li, J. Wang, Y. Hu, W. Y. Wang, Z. Wang, and B. Xiang, “Decaf: Joint decoding of answers and logical forms for question answering over knowledge bases,” in The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.   OpenReview.net, 2023. [Online]. Available: https://openreview.net/pdf?id=XHc5zRPxqV9
  144. G. Dong, R. Li, S. Wang, Y. Zhang, Y. Xian, and W. Xu, “Bridging the kb-text gap: Leveraging structured knowledge-aware pre-training for KBQA,” in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023, Birmingham, United Kingdom, October 21-25, 2023, I. Frommholz, F. Hopfgartner, M. Lee, M. Oakes, M. Lalmas, M. Zhang, and R. L. T. Santos, Eds.   ACM, 2023, pp. 3854–3859. [Online]. Available: https://doi.org/10.1145/3583780.3615150
  145. K. Wang, F. Duan, S. Wang, P. Li, Y. Xian, C. Yin, W. Rong, and Z. Xiong, “Knowledge-driven cot: Exploring faithful reasoning in llms for knowledge-intensive question answering,” CoRR, vol. abs/2308.13259, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2308.13259
  146. D. Yu and Y. Yang, “Retrieval-enhanced generative model for large-scale knowledge graph completion,” in Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2023, Taipei, Taiwan, July 23-27, 2023, H. Chen, W. E. Duh, H. Huang, M. P. Kato, J. Mothe, and B. Poblete, Eds.   ACM, 2023, pp. 2334–2338. [Online]. Available: https://doi.org/10.1145/3539618.3592052
  147. W. Zhung, H. Kim, and W. Y. Kim, “A protein-ligand interaction-focused 3d molecular generative framework for generalizable structure-based drug design,” 2023.
  148. W. Chen, H. Hu, C. Saharia, and W. W. Cohen, “Re-imagen: Retrieval-augmented text-to-image generator,” arXiv preprint arXiv:2209.14491, 2022.
  149. S. Sheynin, O. Ashual, A. Polyak, U. Singer, O. Gafni, E. Nachmani, and Y. Taigman, “Knn-diffusion: Image generation via large-scale retrieval,” arXiv preprint arXiv:2204.02849, 2022.
  150. A. Blattmann, R. Rombach, K. Oktay, J. Müller, and B. Ommer, “Retrieval-augmented diffusion models,” Advances in Neural Information Processing Systems, vol. 35, pp. 15 309–15 324, 2022.
  151. R. Rombach, A. Blattmann, and B. Ommer, “Text-guided synthesis of artistic images with retrieval-augmented diffusion models,” arXiv preprint arXiv:2207.13038, 2022.
  152. B. Li, P. H. Torr, and T. Lukasiewicz, “Memory-driven text-to-image generation,” arXiv preprint arXiv:2208.07022, 2022.
  153. M. de Jong, Y. Zemlyanskiy, N. FitzGerald, F. Sha, and W. W. Cohen, “Mention memory: incorporating textual knowledge into transformers through entity mention attention,” in International Conference on Learning Representations, 2021.
  154. A. Bertsch, U. Alon, G. Neubig, and M. R. Gormley, “Unlimiformer: Long-range transformers with unlimited length input,” CoRR, vol. abs/2305.01625, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2305.01625
  155. T. Févry, L. B. Soares, N. Fitzgerald, E. Choi, and T. Kwiatkowski, “Entities as experts: Sparse memory access with entity supervision,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 4937–4951.
  156. B. Jing, Y. Zhang, Z. Song, J. Yu, and W. Yang, “Amd: Anatomical motion diffusion with interpretable motion decomposition and fusion,” arXiv preprint arXiv:2312.12763, 2023.
  157. Y. Yuan, H. Liu, X. Liu, Q. Huang, M. D. Plumbley, and W. Wang, “Retrieval-augmented text-to-audio generation,” CoRR, vol. abs/2309.08051, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.08051
  158. B. Yang, M. Cao, and Y. Zou, “Concept-aware video captioning: Describing videos with effective prior information,” IEEE Trans. Image Process., vol. 32, pp. 5366–5378, 2023. [Online]. Available: https://doi.org/10.1109/TIP.2023.3307969
  159. Z. Zhong, T. Lei, and D. Chen, “Training language models with memory augmentation,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.   Association for Computational Linguistics, 2022, pp. 5657–5673. [Online]. Available: https://doi.org/10.18653/v1/2022.emnlp-main.382
  160. S. Min, W. Shi, M. Lewis, X. Chen, W. Yih, H. Hajishirzi, and L. Zettlemoyer, “Nonparametric masked language modeling,” in Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds.   Association for Computational Linguistics, 2023, pp. 2097–2118. [Online]. Available: https://doi.org/10.18653/v1/2023.findings-acl.132
  161. X. Zhang, Y. Zhou, G. Yang, and T. Chen, “Syntax-aware retrieval augmented code generation,” in Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds.   Association for Computational Linguistics, 2023, pp. 1291–1302. [Online]. Available: https://aclanthology.org/2023.findings-emnlp.90
  162. Z. Fei, “Memory-augmented image captioning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 2, 2021, pp. 1317–1324.
  163. Y. Leviathan, M. Kalman, and Y. Matias, “Fast inference from transformers via speculative decoding,” in International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, ser. Proceedings of Machine Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202.   PMLR, 2023, pp. 19 274–19 286. [Online]. Available: https://proceedings.mlr.press/v202/leviathan23a.html
  164. L. Wang, N. Yang, and F. Wei, “Query2doc: Query expansion with large language models,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds.   Association for Computational Linguistics, 2023, pp. 9414–9423. [Online]. Available: https://aclanthology.org/2023.emnlp-main.585
  165. L. Gao, X. Ma, J. Lin, and J. Callan, “Precise zero-shot dense retrieval without relevance labels,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds.   Association for Computational Linguistics, 2023, pp. 1762–1777. [Online]. Available: https://doi.org/10.18653/v1/2023.acl-long.99
  166. R. Jagerman, H. Zhuang, Z. Qin, X. Wang, and M. Bendersky, “Query expansion by prompting large language models,” CoRR, vol. abs/2305.03653, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2305.03653
  167. J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi, Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in large language models,” in Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., 2022. [Online]. Available: http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
  168. K. Mao, Z. Dou, F. Mo, J. Hou, H. Chen, and H. Qian, “Large language models know your contextual search intent: A prompting framework for conversational search,” in Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds.   Association for Computational Linguistics, 2023, pp. 1211–1225. [Online]. Available: https://aclanthology.org/2023.findings-emnlp.86
  169. J. Liu, “LlamaIndex,” 11 2022. [Online]. Available: https://github.com/jerryjliu/llama_index
  170. S. Xiao, Z. Liu, P. Zhang, and N. Muennighoff, “C-pack: Packaged resources to advance general chinese embedding,” 2023.
  171. J. Chen, S. Xiao, P. Zhang, K. Luo, D. Lian, and Z. Liu, “Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation,” 2023.
  172. S. Xiao, Z. Liu, P. Zhang, and X. Xing, “Lm-cocktail: Resilient tuning of language models via model merging,” 2023.
  173. P. Zhang, S. Xiao, Z. Liu, Z. Dou, and J.-Y. Nie, “Retrieve anything to augment large language models,” 2023.
  174. W. Wang, Y. Wang, S. Joty, and S. C. H. Hoi, “Rap-gen: Retrieval-augmented patch generation with codet5 for automatic program repair,” in Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San Francisco, CA, USA, December 3-9, 2023, S. Chandra, K. Blincoe, and P. Tonella, Eds.   ACM, 2023, pp. 146–158. [Online]. Available: https://doi.org/10.1145/3611643.3616256
  175. M. R. Glass, G. Rossiello, M. F. M. Chowdhury, A. Naik, P. Cai, and A. Gliozzo, “Re2g: Retrieve, rerank, generate,” in Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022, Seattle, WA, United States, July 10-15, 2022, M. Carpuat, M. de Marneffe, and I. V. M. Ruíz, Eds.   Association for Computational Linguistics, 2022, pp. 2701–2715. [Online]. Available: https://doi.org/10.18653/v1/2022.naacl-main.194
  176. R. F. Nogueira and K. Cho, “Passage re-ranking with BERT,” CoRR, vol. abs/1901.04085, 2019. [Online]. Available: http://arxiv.org/abs/1901.04085
  177. J. Li, Y. Zhao, Y. Li, G. Li, and Z. Jin, “Acecoder: Utilizing existing code to enhance code generation,” arXiv preprint arXiv:2303.17780, 2023.
  178. P. Shi, R. Zhang, H. Bai, and J. Lin, “XRICL: cross-lingual retrieval-augmented in-context learning for cross-lingual text-to-sql semantic parsing,” in Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.   Association for Computational Linguistics, 2022, pp. 5248–5259. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-emnlp.384
  179. https://www.pinecone.io.
  180. E. Saravia, “Prompt Engineering Guide,” https://github.com/dair-ai/Prompt-Engineering-Guide, 12 2022.
  181. H. S. Zheng, S. Mishra, X. Chen, H. Cheng, E. H. Chi, Q. V. Le, and D. Zhou, “Take a step back: Evoking reasoning via abstraction in large language models,” CoRR, vol. abs/2310.06117, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.06117
  182. S. Diao, P. Wang, Y. Lin, and T. Zhang, “Active prompting with chain-of-thought for large language models,” CoRR, vol. abs/2302.12246, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.12246
  183. H. Jiang, Q. Wu, C. Lin, Y. Yang, and L. Qiu, “Llmlingua: Compressing prompts for accelerated inference of large language models,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds.   Association for Computational Linguistics, 2023, pp. 13 358–13 376. [Online]. Available: https://aclanthology.org/2023.emnlp-main.825
  184. N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang, “Lost in the middle: How language models use long contexts,” CoRR, vol. abs/2307.03172, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2307.03172
  185. T. Ahmed, K. S. Pai, P. Devanbu, and E. T. Barr, “Automatic semantic augmentation of language model prompts (for code summarization),” 2024.
  186. E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong, “A conversational paradigm for program synthesis,” CoRR, vol. abs/2203.13474, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2203.13474
  187. Y. He, M. Xia, H. Chen, X. Cun, Y. Gong, J. Xing, Y. Zhang, X. Wang, C. Weng, Y. Shan, and Q. Chen, “Animate-a-story: Storytelling with retrieval-augmented video generation,” CoRR, vol. abs/2307.06940, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2307.06940
  188. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.   OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=nZeVKeeFYf9
  189. C. Liu, P. Çetin, Y. Patodia, S. Chakraborty, Y. Ding, and B. Ray, “Automated code editing with search-generate-modify,” CoRR, vol. abs/2306.06490, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2306.06490
  190. H. Joshi, J. P. C. Sánchez, S. Gulwani, V. Le, G. Verbruggen, and I. Radicek, “Repair is nearly generation: Multilingual program repair with llms,” in Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, B. Williams, Y. Chen, and J. Neville, Eds.   AAAI Press, 2023, pp. 5131–5140. [Online]. Available: https://doi.org/10.1609/aaai.v37i4.25642
  191. Z. Jiang, F. F. Xu, L. Gao, Z. Sun, Q. Liu, J. Dwivedi-Yu, Y. Yang, J. Callan, and G. Neubig, “Active retrieval augmented generation,” arXiv preprint arXiv:2305.06983, 2023.
  192. Z. Jiang, J. Araki, H. Ding, and G. Neubig, “How can we know When language models know? on the calibration of language models for question answering,” Trans. Assoc. Comput. Linguistics, vol. 9, pp. 962–977, 2021. [Online]. Available: https://doi.org/10.1162/tacl_a_00407
  193. N. Kandpal, H. Deng, A. Roberts, E. Wallace, and C. Raffel, “Large language models struggle to learn long-tail knowledge,” in International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, ser. Proceedings of Machine Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202.   PMLR, 2023, pp. 15 696–15 707. [Online]. Available: https://proceedings.mlr.press/v202/kandpal23a.html
  194. R. Ren, Y. Wang, Y. Qu, W. X. Zhao, J. Liu, H. Tian, H. Wu, J. Wen, and H. Wang, “Investigating the factual knowledge boundary of large language models with retrieval augmentation,” CoRR, vol. abs/2307.11019, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2307.11019
  195. Y. Wang, P. Li, M. Sun, and Y. Liu, “Self-knowledge guided retrieval augmentation for large language models,” in Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds.   Association for Computational Linguistics, 2023, pp. 10 303–10 315. [Online]. Available: https://aclanthology.org/2023.findings-emnlp.691
  196. F. Zhang, B. Chen, Y. Zhang, J. Keung, J. Liu, D. Zan, Y. Mao, J. Lou, and W. Chen, “Repocoder: Repository-level code completion through iterative retrieval and generation,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds.   Association for Computational Linguistics, 2023, pp. 2471–2484. [Online]. Available: https://aclanthology.org/2023.emnlp-main.151
  197. Z. Shao, Y. Gong, Y. Shen, M. Huang, N. Duan, and W. Chen, “Enhancing retrieval-augmented large language models with iterative retrieval-generation synergy,” in Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds.   Association for Computational Linguistics, 2023, pp. 9248–9274. [Online]. Available: https://aclanthology.org/2023.findings-emnlp.620
  198. O. Agarwal, H. Ge, S. Shakeri, and R. Al-Rfou, “Knowledge graph based synthetic corpus generation for knowledge-enhanced language model pre-training,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tür, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds.   Association for Computational Linguistics, 2021, pp. 3554–3565. [Online]. Available: https://doi.org/10.18653/v1/2021.naacl-main.278
  199. J. Baek, A. F. Aji, and A. Saffari, “Knowledge-augmented language model prompting for zero-shot knowledge graph question answering,” CoRR, vol. abs/2306.04136, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2306.04136
  200. J. Sun, C. Xu, L. Tang, S. Wang, C. Lin, Y. Gong, H. Shum, and J. Guo, “Think-on-graph: Deep and responsible reasoning of large language model with knowledge graph,” CoRR, vol. abs/2307.07697, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2307.07697
  201. P. Limkonchotiwat, W. Ponwitayarat, C. Udomcharoenchaikit, E. Chuangsuwanich, and S. Nutanong, “Cl-relkt: Cross-lingual language knowledge transfer for multilingual retrieval question answering,” in Findings of the Association for Computational Linguistics: NAACL 2022, Seattle, WA, United States, July 10-15, 2022, M. Carpuat, M. de Marneffe, and I. V. M. Ruíz, Eds.   Association for Computational Linguistics, 2022, pp. 2141–2155. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-naacl.165
  202. A. Asai, X. Yu, J. Kasai, and H. Hajishirzi, “One question answering model for many languages with cross-lingual dense passage retrieval,” in Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021, pp. 7547–7560. [Online]. Available: https://proceedings.neurips.cc/paper/2021/hash/3df07fdae1ab273a967aaa1d355b8bb6-Abstract.html
  203. K. Lee, S. Han, S. Hwang, and M. Lee, “When to read documents or QA history: On unified and selective open-domain QA,” in Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds.   Association for Computational Linguistics, 2023, pp. 6420–6432. [Online]. Available: https://doi.org/10.18653/v1/2023.findings-acl.401
  204. K. Huang, C. Zhai, and H. Ji, “CONCRETE: improving cross-lingual fact-checking with cross-lingual retrieval,” in Proceedings of the 29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17, 2022, N. Calzolari, C. Huang, H. Kim, J. Pustejovsky, L. Wanner, K. Choi, P. Ryu, H. Chen, L. Donatelli, H. Ji, S. Kurohashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K. Lee, E. Santus, F. Bond, and S. Na, Eds.   International Committee on Computational Linguistics, 2022, pp. 1024–1035. [Online]. Available: https://aclanthology.org/2022.coling-1.86
  205. Y. Liu, Y. Wan, L. He, H. Peng, and P. S. Yu, “KG-BART: knowledge graph-augmented BART for generative commonsense reasoning,” in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.   AAAI Press, 2021, pp. 6418–6425. [Online]. Available: https://doi.org/10.1609/aaai.v35i7.16796
  206. H. Zhang, Z. Liu, C. Xiong, and Z. Liu, “Grounded conversation generation as guided traverses in commonsense knowledge graphs,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault, Eds.   Association for Computational Linguistics, 2020, pp. 2031–2043. [Online]. Available: https://doi.org/10.18653/v1/2020.acl-main.184
  207. D. Cai, Y. Wang, W. Bi, Z. Tu, X. Liu, W. Lam, and S. Shi, “Skeleton-to-response: Dialogue generation guided by retrieval memory,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds.   Association for Computational Linguistics, 2019, pp. 1219–1228. [Online]. Available: https://doi.org/10.18653/v1/n19-1124
  208. M. Komeili, K. Shuster, and J. Weston, “Internet-augmented dialogue generation,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds.   Association for Computational Linguistics, 2022, pp. 8460–8478. [Online]. Available: https://doi.org/10.18653/v1/2022.acl-long.579
  209. K. Shuster, J. Xu, M. Komeili, D. Ju, E. M. Smith, S. Roller, M. Ung, M. Chen, K. Arora, J. Lane, M. Behrooz, W. Ngan, S. Poff, N. Goyal, A. Szlam, Y. Boureau, M. Kambadur, and J. Weston, “Blenderbot 3: a deployed conversational agent that continually learns to responsibly engage,” CoRR, vol. abs/2208.03188, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2208.03188
  210. S. Kim, J. Y. Jang, M. Jung, and S. Shin, “A model of cross-lingual knowledge-grounded response generation for open-domain dialogue systems,” in Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds.   Association for Computational Linguistics, 2021, pp. 352–365. [Online]. Available: https://doi.org/10.18653/v1/2021.findings-emnlp.33
  211. D. Cai, Y. Wang, H. Li, W. Lam, and L. Liu, “Neural machine translation with monolingual translation memory,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, C. Zong, F. Xia, W. Li, and R. Navigli, Eds.   Association for Computational Linguistics, 2021, pp. 7307–7318. [Online]. Available: https://doi.org/10.18653/v1/2021.acl-long.567
  212. U. Khandelwal, A. Fan, D. Jurafsky, L. Zettlemoyer, and M. Lewis, “Nearest neighbor machine translation,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.   OpenReview.net, 2021. [Online]. Available: https://openreview.net/forum?id=7wCBOfJ8hJM
  213. X. Du and H. Ji, “Retrieval-augmented generative question answering for event argument extraction,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.   Association for Computational Linguistics, 2022, pp. 4649–4666. [Online]. Available: https://doi.org/10.18653/v1/2022.emnlp-main.307
  214. Y. Gao, Q. Yin, Z. Li, R. Meng, T. Zhao, B. Yin, I. King, and M. R. Lyu, “Retrieval-augmented multilingual keyphrase generation with retriever-generator iterative training,” in Findings of the Association for Computational Linguistics: NAACL 2022, Seattle, WA, United States, July 10-15, 2022, M. Carpuat, M. de Marneffe, and I. V. M. Ruíz, Eds.   Association for Computational Linguistics, 2022, pp. 1233–1246. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-naacl.92
  215. A. Madaan, S. Zhou, U. Alon, Y. Yang, and G. Neubig, “Language models of code are few-shot commonsense learners,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds.   Association for Computational Linguistics, 2022, pp. 1384–1403. [Online]. Available: https://doi.org/10.18653/v1/2022.emnlp-main.90
  216. Y. Wang, H. Le, A. Gotmare, N. D. Q. Bui, J. Li, and S. C. H. Hoi, “Codet5+: Open code large language models for code understanding and generation,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds.   Association for Computational Linguistics, 2023, pp. 1069–1088. [Online]. Available: https://aclanthology.org/2023.emnlp-main.68
  217. N. Beau and B. Crabbé, “The impact of lexical and grammatical processing on generating code from natural language,” in Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds.   Association for Computational Linguistics, 2022, pp. 2204–2214. [Online]. Available: https://doi.org/10.18653/v1/2022.findings-acl.173
  218. B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine: Exemplar-based neural comment generation,” in 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020.   IEEE, 2020, pp. 349–360. [Online]. Available: https://doi.org/10.1145/3324884.3416578
  219. S. Liu, Y. Chen, X. Xie, J. K. Siow, and Y. Liu, “Retrieval-augmented generation for code summarization via hybrid GNN,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.   OpenReview.net, 2021. [Online]. Available: https://openreview.net/forum?id=zv-typ1gPxA
  220. F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering vulnerabilities with code property graphs,” in 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014.   IEEE Computer Society, 2014, pp. 590–604. [Online]. Available: https://doi.org/10.1109/SP.2014.44
  221. S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B. Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng, S. Fu, and S. Liu, “Codexglue: A machine learning benchmark dataset for code understanding and generation,” in Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, J. Vanschoren and S. Yeung, Eds., 2021. [Online]. Available: https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
  222. Y. Ding, Z. Wang, W. U. Ahmad, M. K. Ramanathan, R. Nallapati, P. Bhatia, D. Roth, and B. Xiang, “Cocomic: Code completion by jointly modeling in-file and cross-file context,” CoRR, vol. abs/2212.10007, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2212.10007
  223. B. Bogin, S. Gupta, P. Clark, and A. Sabharwal, “Leveraging code to improve in-context learning for semantic parsing,” arXiv preprint arXiv:2311.09519, 2023.
  224. Z. Jie and W. Lu, “Leveraging training data in few-shot prompting for numerical reasoning,” arXiv preprint arXiv:2305.18170, 2023.
  225. Y. Hao, W. Chen, Z. Zhou, and W. Cui, “E&v: Prompting large language models to perform static analysis by pseudo-code execution and verification,” arXiv preprint arXiv:2312.08477, 2023.
  226. G. Pinto, C. de Souza, J. B. Neto, A. de Souza, T. Gotto, and E. Monteiro, “Lessons from building stackspot ai: A contextualized ai coding assistant,” 2024.
  227. S. Ghosh, S. Kumar, C. K. R. Evuru, R. Duraiswami, and D. Manocha, “RECAP: retrieval-augmented audio captioning,” CoRR, vol. abs/2309.09836, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.09836
  228. B. Elizalde, S. Deshmukh, and H. Wang, “Natural language supervision for general-purpose audio representations,” CoRR, vol. abs/2309.05767, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.05767
  229. T. Kouzelis and V. Katsouros, “Weakly-supervised automated audio captioning via text only training,” CoRR, vol. abs/2309.12242, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.12242
  230. S. Deshmukh, B. Elizalde, D. Emmanouilidou, B. Raj, R. Singh, and H. Wang, “Training audio captioning models without audio,” CoRR, vol. abs/2309.07372, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.07372
  231. Y. Kirstain, O. Levy, and A. Polyak, “X&fuse: Fusing visual information in text-to-image generation,” arXiv preprint arXiv:2303.01000, 2023.
  232. Z. Zhang, A. Zhang, M. Li, H. Zhao, G. Karypis, and A. Smola, “Multimodal chain-of-thought reasoning in language models,” arXiv preprint arXiv:2302.00923, 2023.
  233. C. Xu, M. Yang, X. Ao, Y. Shen, R. Xu, and J. Tian, “Retrieval-enhanced adversarial training with dynamic memory-augmented attention for image paragraph captioning,” Knowledge-Based Systems, vol. 214, p. 106730, 2021.
  234. R. Ramos, D. Elliott, and B. Martins, “Retrieval-augmented image captioning,” arXiv preprint arXiv:2302.08268, 2023.
  235. Z. Hu, A. Iscen, C. Sun, Z. Wang, K.-W. Chang, Y. Sun, C. Schmid, D. A. Ross, and A. Fathi, “Reveal: Retrieval-augmented visual-language pre-training with multi-source multimodal knowledge memory,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 23 369–23 379.
  236. Z. Li, W. Zhao, X. Du, G. Zhou, and S. Zhang, “Cross-modal retrieval and semantic refinement for remote sensing image captioning,” Remote Sensing, vol. 16, no. 1, p. 196, 2024.
  237. S. Chen, Q. Liu, Z. Yu, C. Lin, J. Lou, and F. Jiang, “Retrack: A flexible and efficient framework for knowledge base question answering,” in Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL 2021 - System Demonstrations, Online, August 1-6, 2021, H. Ji, J. C. Park, and R. Xia, Eds.   Association for Computational Linguistics, 2021, pp. 325–336. [Online]. Available: https://doi.org/10.18653/v1/2021.acl-demo.39
  238. K. D. Bollacker, C. Evans, P. K. Paritosh, T. Sturge, and J. Taylor, “Freebase: a collaboratively created graph database for structuring human knowledge,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, J. T. Wang, Ed.   ACM, 2008, pp. 1247–1250. [Online]. Available: https://doi.org/10.1145/1376616.1376746
  239. Y. Shu and Z. Yu, “Data distribution bottlenecks in grounding language models to knowledge bases,” CoRR, vol. abs/2309.08345, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.08345
  240. D. Leake and D. J. Crandall, “On bringing case-based reasoning methodology to deep learning,” in Case-Based Reasoning Research and Development - 28th International Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings, ser. Lecture Notes in Computer Science, I. Watson and R. O. Weber, Eds., vol. 12311.   Springer, 2020, pp. 343–348. [Online]. Available: https://doi.org/10.1007/978-3-030-58342-2_22
  241. L. Zhang, J. Zhang, Y. Wang, S. Cao, X. Huang, C. Li, H. Chen, and J. Li, “FC-KBQA: A fine-to-coarse composition framework for knowledge base question answering,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds.   Association for Computational Linguistics, 2023, pp. 1002–1017. [Online]. Available: https://doi.org/10.18653/v1/2023.acl-long.57
  242. C. Wang, Y. Xu, Z. Peng, C. Zhang, B. Chen, X. Wang, L. Feng, and B. An, “keqing: knowledge-based question answering is a nature chain-of-thought mentor of LLM,” CoRR, vol. abs/2401.00426, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.00426
  243. J. Liu, S. Cao, J. Shi, T. Zhang, L. Hou, and J. Li, “Probing structured semantics understanding and generation of language models via question answering,” CoRR, vol. abs/2401.05777, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.05777
  244. D. Weininger, “Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules,” Journal of Chemical Information and Computer Sciences, 1988.
  245. R. Irwin, S. Dimitriadis, J. He, and E. J. Bjerrum, “Chemformer: a pre-trained transformer for computational chemistry,” Machine Learning: Science and Technology, 2022.
  246. A. C. Anderson, “The process of structure-based drug design,” Chemistry & biology, vol. 10, no. 9, pp. 787–797, 2003.
  247. M. Batool, B. Ahmad, and S. Choi, “A structure-based drug discovery paradigm,” International journal of molecular sciences, vol. 20, no. 11, p. 2783, 2019.
  248. L. Yang, Z. Huang, X. Zhou, M. Xu, W. Zhang, Y. Wang, X. Zheng, W. Yang, R. O. Dror, S. Hong et al., “Prompt-based 3d molecular diffusion models for structure-based drug design,” 2023.
  249. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
  250. J. Chen, H. Lin, X. Han, and L. Sun, “Benchmarking large language models in retrieval-augmented generation,” CoRR, vol. abs/2309.01431, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.01431
  251. S. ES, J. James, L. E. Anke, and S. Schockaert, “RAGAS: automated evaluation of retrieval augmented generation,” CoRR, vol. abs/2309.15217, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.15217
  252. J. Saad-Falcon, O. Khattab, C. Potts, and M. Zaharia, “ARES: an automated evaluation framework for retrieval-augmented generation systems,” CoRR, vol. abs/2311.09476, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2311.09476
  253. https://github.com/truera/trulens.
  254. Y. Lyu, Z. Li, S. Niu, F. Xiong, B. Tang, W. Wang, H. Wu, H. Liu, T. Xu, and E. Chen, “CRUD-RAG: A comprehensive chinese benchmark for retrieval-augmented generation of large language models,” CoRR, vol. abs/2401.17043, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.17043
  255. S. Barnett, S. Kurniawan, S. Thudumu, Z. Brannelly, and M. Abdelrazek, “Seven failure points when engineering a retrieval augmented generation system,” CoRR, vol. abs/2401.05856, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.05856
  256. F. Cuconasu, G. Trappolini, F. Siciliano, S. Filice, C. Campagnano, Y. Maarek, N. Tonellotto, and F. Silvestri, “The power of noise: Redefining retrieval for RAG systems,” CoRR, vol. abs/2401.14887, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.14887
  257. L. Qiu, P. Shaw, P. Pasupat, T. Shi, J. Herzig, E. Pitler, F. Sha, and K. Toutanova, “Evaluating the impact of model scale for compositional generalization in semantic parsing,” arXiv preprint arXiv:2205.12253, 2022.
  258. R. Aksitov, C. Chang, D. Reitter, S. Shakeri, and Y. Sung, “Characterizing attribution and fluency tradeoffs for retrieval-augmented large language models,” CoRR, vol. abs/2302.05578, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.05578
  259. C. Han, Q. Wang, W. Xiong, Y. Chen, H. Ji, and S. Wang, “Lm-infinite: Simple on-the-fly length generalization for large language models,” CoRR, vol. abs/2308.16137, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2308.16137
  260. S. Jindal, “Did google gemini 1.5 really kill rag?” https://analyticsindiamag.com/did-google-gemini-1-5-really-kill-rag/, 2024.
  261. H. Chase, “Langchain,” https://github.com/langchain-ai/langchain, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (10)
  1. Penghao Zhao (7 papers)
  2. Hailin Zhang (51 papers)
  3. Qinhan Yu (5 papers)
  4. Zhengren Wang (15 papers)
  5. Yunteng Geng (2 papers)
  6. Fangcheng Fu (31 papers)
  7. Ling Yang (88 papers)
  8. Wentao Zhang (261 papers)
  9. Bin Cui (165 papers)
  10. Jie Jiang (246 papers)
Citations (120)
Youtube Logo Streamline Icon: https://streamlinehq.com