Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Magnon spectrum of altermagnets beyond linear spin wave theory: Magnon-magnon interactions via time-dependent matrix product states vs. atomistic spin dynamics (2402.19433v3)

Published 29 Feb 2024 in cond-mat.str-el and cond-mat.mes-hall

Abstract: The energy-momentum dispersion of magnons, as collective low-energy excitations of magnetic material, is computed from an effective quantum spin Hamiltonian but simplified via linearized Holstein-Primakoff transformations to describe noninteracting magnons. The dispersion produced by such linear spin wave theory (LSWT) is then plotted as sharp bands'' of infinitely long-lived quasiparticles. However, magnons are prone to many-body interactions with other quasiparticles -- such as electrons, phonons or other magnons -- which can lead to shifting (i.e., band renormalization) and broadening ofsharp bands'' as the signature of finite quasiparticle lifetime. The magnon-magnon interactions can be particularly important in antiferromagnets (AFs), and, therefore, possibly in newly classified altermagnets sharing many features of collinear AFs. Here, we employ nonperturbative quantum many-body calculations, via time-dependent matrix product states (TDMPS), to obtain magnon spectral function for RuO$_2$ altermagnet whose effective quantum spin Hamiltonian is put onto 4-leg cylinder. Its upper band is shifted away from upper ``sharp band'' of LSWT, as well as broadened, which is explained as the consequence of {\em hybridization} of the latter with three-magnon continuum. This implies that two-magnon Raman scattering spectra {\em cannot} be computed from LSWT bands, which offers a litmus test for the relevance of magnon-magnon interactions. Finally, we employ atomistic spin dynamics (ASD) simulations, based on classical Landau-Lifshitz-Gilbert (LLG) equation, to obtain magnon spectrum at finite temperature and/or at a fraction of the cost of TDMPS calculations. Despite including magnon-magnon interactions via nonlinearity of LLG equation, ASD simulations {\em cannot} match the TDMPS-computed magnon spectrum, thereby signaling {\em nonclassical} effects harbored by AFs and altermagnets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. E. Kaxiras and J. D. Joannopoulos, Quantum theory of materials (Cambridge University Press, Cambridge, 2019).
  2. S. Konschuh, M. Gmitra, and J. Fabian, Tight-binding theory of the spin-orbit coupling in graphene, Phys. Rev. B 82, 245412 (2010).
  3. K. Held, Electronic structure calculations using dynamical mean field theory, Adv. Phys. 56, 829 (2007).
  4. F. Bloch, Zur theorie des ferromagnetismus, Z. Phys. 61, 206 (1930).
  5. U. Bajpai, A. Suresh, and B. K. Nikolić, Quantum many-body states and Green's functions of nonequilibrium electron-magnon systems: Localized spin operators versus their mapping to Holstein-Primakoff bosons, Phys. Rev. B 104, 184425 (2021).
  6. T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58, 1098 (1940).
  7. T. Olsen, Unified treatment of magnons and excitons in monolayer CrI3subscriptCrI3{\mathrm{CrI}}_{3}roman_CrI start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT from many-body perturbation theory, Phys. Rev. Lett. 127, 166402 (2021).
  8. Y. Li and W. Bailey, Wave-number-dependent Gilbert damping in metallic ferromagnets., Phys. Rev. Lett. 116, 117602 (2016).
  9. M. E. Zhitomirsky and A. L. Chernyshev, Colloquium: Spontaneous magnon decays, Rev. Mod. Phys. 85, 219 (2013).
  10. N. Tancogne-Dejean, F. Eich, and A. Rubio, Time-dependent magnons from first principles, J. Chem. Theory Comput. 16, 1007 (2020).
  11. E. Hankiewicz, G. Vignale, and Y. Tserkovnyak, Inhomogeneous Gilbert damping from impurities and electron-electron interactions, Phys. Rev. B 78, 020404(R) (2008).
  12. Y. Tserkovnyak, E. M. Hankiewicz, and G. Vignale, Transverse spin diffusion in ferromagnets, Phys. Rev. B 79, 094415 (2009).
  13. S. R. White and A. E. Feiguin, Real-time evolution using the density matrix renormalization group, Phys. Rev. Lett. 93, 076401 (2004).
  14. P. Schmitteckert, Nonequilibrium electron transport using the density matrix renormalization group method, Phys. Rev. B 70, 121302 (2004).
  15. A. E. Feiguin, The density matrix renormalization group and its time-dependent variants, AIP Conf. Proc. 1419, 5 (2011).
  16. T. Chanda, P. Sierant, and J. Zakrzewski, Time dynamics with matrix product states: Many-body localization transition of large systems revisited, Phys. Rev. B 101, 035148 (2020).
  17. L. Šmejkal, J. Sinova, and T. Jungwirth, Emerging research landscape of altermagnetism, Phys. Rev. X 12, 040501 (2022).
  18. L. Šmejkal, J. Sinova, and T. Jungwirth, Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry, Phys. Rev. X 12, 031042 (2022).
  19. S. Hayami, Y. Yanagi, and H. Kusunose, Momentum-dependent spin splitting by collinear antiferromagnetic ordering, J. Phys. Soc. Jpn. 88, 23702 (2019).
  20. E. M. Chudnovsky and J. Tejada, Lectures on Magnetism (Rinton Press, Princeton, 2006).
  21. A. Kamra, W. Belzig, and A. Brataas, Magnon-squeezing as a niche of quantum magnonics, Appl. Phys. Lett. 117, 090501 (2020).
  22. F. Garcia-Gaitan and B. K. Nikolić, The fate of entanglement in ferro- and antiferro-magnets under Lindbladian or non-markovian dynamics and possible transition to Landau-Lifshitz classical dynamics, arXiv:2303.17596  (2023).
  23. J. König and A. Hucht, Newton series expansion of bosonic operator functions, SciPost Phys. 10, 007 (2021).
  24. M. Yang and S. R. White, Time-dependent variational principle with ancillary Krylov subspace, Phys. Rev. B 102, 094315 (2020).
  25. M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor software library for tensor network calculations, SciPost Phys. Codebases , 4 (2022).
  26. D. V. Berkov and J. Miltat, Spin-torque driven magnetization dynamics: Micromagnetic modeling, J. Magn. Magn. Mater. 320, 1238 (2008).
  27. T. P. Devereaux and R. Hackl, Inelastic light scattering from correlated electrons, Rev. Mod. Phys. 79, 175 (2007).
  28. P. Lemmens, G. Güntherodt, and C. Gros, Magnetic light scattering in low-dimensional quantum spin systems, Phys. Rep. 375, 1 (2003).
  29. P. A. Fleury and R. Loudon, Scattering of light by one- and two-magnon excitations, Phys. Rev. 166, 514 (1968).
  30. M. Cottam, Theory of two-magnon Raman scattering in antiferromagnets at finite temperatures, J. Phys. C: Solid State Phys. 5, 1461 (1972).
  31. https://wiki.physics.udel.edu/phys800.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.