Papers
Topics
Authors
Recent
2000 character limit reached

3D Super-resolution Optical Fluctuation Imaging with Temporal Focusing two-photon excitation (2402.19338v1)

Published 29 Feb 2024 in physics.optics and physics.bio-ph

Abstract: 3D super-resolution fluorescence microscopy typically requires sophisticated setups, sample preparation, or long measurements. A notable exception, SOFI, only requires recording a sequence of frames and no hardware modifications whatsoever but being a wide-field method, it faces problems in thick, dense samples. We combine SOFI with temporal focusing two-photon excitation -- the wide-field method that is capable of excitation of a thin slice in 3D volume. Both methods are easy to implement in a standard microscope, and by merging them, we obtain super-resolved 3D images of neurons stained with quantum dots. Our approach offers reduced bleaching and an improved signal-to-background ratio that can be used when robust resolution improvement is required in thick, dense samples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” \JournalTitleOpt. Lett. 19, 780–782 (1994).
  2. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” \JournalTitleScience 355, 606–612 (2017).
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” \JournalTitleScience 313, 1642–1645 (2006).
  4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” \JournalTitleNature Methods 3, 793–796 (2006).
  5. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” \JournalTitleJournal of Microscopy 198, 82–87 (2000).
  6. J. Vangindertael, R. Camacho, W. Sempels, H. Mizuno, P. Dedecker, and K. P. F. Janssen, “An introduction to optical super-resolution microscopy for the adventurous biologist,” \JournalTitleMethods and Applications in Fluorescence 6, 022003 (2018).
  7. L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. C. Drummen, “Super-resolution microscopy demystified,” \JournalTitleNature Cell Biology 21, 72–84 (2019).
  8. K. Prakash, B. Diederich, R. Heintzmann, and L. Schermelleh, “Super-resolution microscopy: a brief history and new avenues,” \JournalTitlePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, 20210110 (2022).
  9. S. Liu, P. Hoess, and J. Ries, “Super-resolution microscopy for structural cell biology,” \JournalTitleAnnual Review of Biophysics 51, 301–326 (2022). PMID: 35119945.
  10. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi),” \JournalTitleProceedings of the National Academy of Sciences 106, 22287–22292 (2009).
  11. S. Geissbuehler, C. Dellagiacoma, and T. Lasser, “Comparison between SOFI and STORM,” \JournalTitleBiomedical Optics Express 2, 408 (2011).
  12. W. Zhao, S. Zhao, Z. Han, X. Ding, G. Hu, L. Qu, Y. Huang, X. Wang, H. Mao, Y. Jiu, Y. Hu, J. Tan, X. Ding, L. Chen, C. Guo, and H. Li, “Enhanced detection of fluorescence fluctuations for high-throughput super-resolution imaging,” \JournalTitleNature Photonics 17, 806–813 (2023).
  13. J. Mizrachi, A. Narasimhan, X. Qi, R. Drewes, R. Palaniswamy, Z. Wu, and P. Osten, “Super-resolution light-sheet fluorescence microscopy by sofi,” \JournalTitlebioRxiv (2020).
  14. X. Chen, W. Zong, R. Li, Z. Zeng, J. Zhao, P. Xi, L. Chen, and Y. Sun, “Two-photon light-sheet nanoscopy by fluorescence fluctuation correlation analysis,” \JournalTitleNanoscale 8, 9982–9987 (2016).
  15. A. Sroda, A. Makowski, R. Tenne, U. Rossman, G. Lubin, D. Oron, and R. Lapkiewicz, “Sofism: Super-resolution optical fluctuation image scanning microscopy,” \JournalTitleOptica 7, 1308–1316 (2020).
  16. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” \JournalTitleOpt. Express 13, 1468–1476 (2005).
  17. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” \JournalTitleOpt. Express 13, 2153–2159 (2005).
  18. E. Papagiakoumou, E. Ronzitti, and V. Emiliani, “Scanless two-photon excitation with temporal focusing,” \JournalTitleNature Methods 17, 571–581 (2020).
  19. O. D. Therrien, B. Aubé, S. Pagès, P. D. Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” \JournalTitleBiomed. Opt. Express 2, 696–704 (2011).
  20. Y. Xue, K. P. Berry, J. R. Boivin, D. Wadduwage, E. Nedivi, and P. T. C. So, “Scattering reduction by structured light illumination in line-scanning temporal focusing microscopy,” \JournalTitleBiomed. Opt. Express 9, 5654–5666 (2018).
  21. A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. S. Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” \JournalTitleScience Advances 4, eaau1338 (2018).
  22. C. Zheng, J. K. Park, M. Yildirim, J. R. Boivin, Y. Xue, M. Sur, P. T. C. So, and D. N. Wadduwage, “De-scattering with excitation patterning enables rapid wide-field imaging through scattering media,” \JournalTitleScience Advances 7, eaay5496 (2021).
  23. A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” \JournalTitleProceedings of the National Academy of Sciences 105, 20221–20226 (2008).
  24. L.-C. Cheng, C.-Y. Chang, W.-C. Yen, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning of thick tissues,” in Unconventional Imaging and Wavefront Sensing 2012, vol. 8520 J. J. Dolne, T. J. Karr, and V. L. Gamiz, eds., International Society for Optics and Photonics (SPIE, 2012), p. 85200N.
  25. E. Y. S. Yew, H. Choi, D. Kim, and P. T. C. So, “Wide-field two-photon microscopy with temporal focusing and HiLo background rejection,” in Multiphoton Microscopy in the Biomedical Sciences XI, vol. 7903 A. Periasamy, K. König, and P. T. C. So, eds., International Society for Optics and Photonics (SPIE, 2011), p. 79031O.
  26. H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” \JournalTitleBiomed. Opt. Express 4, 995–1005 (2013).
  27. N. Wijethilake, M. Anandakumar, C. Zheng, P. T. C. So, M. Yildirim, and D. N. Wadduwage, “Deep-squared: deep learning powered de-scattering with excitation patterning,” \JournalTitleLight: Science & Applications 12, 228 (2023).
  28. Y. Y. Hu, C.-W. Hsu, Y.-H. Tseng, C.-Y. Lin, H.-C. Chiang, A.-S. Chiang, S.-T. Chang, and S.-J. Chen, “Temporal focusing multiphoton microscopy with cross-modality multi-stage 3d u-net for fast and clear bioimaging,” \JournalTitleBiomed. Opt. Express 14, 2478–2491 (2023).
  29. X. Yi and S. Weiss, “Cusp-artifacts in high order superresolution optical fluctuation imaging,” \JournalTitleBiomed. Opt. Express 11, 554–570 (2020).
  30. M. Pawlowska, R. Tenne, B. Ghosh, A. Makowski, and R. Lapkiewicz, “Embracing the uncertainty: the evolution of sofi into a diverse family of fluctuation-based super-resolution microscopy methods,” \JournalTitleJournal of Physics: Photonics 4, 012002 (2021).
  31. H. Dana and S. Shoham, “Numerical evaluation of temporal focusing characteristics in transparent and scattering media,” \JournalTitleOpt. Express 19, 4937–4948 (2011).
  32. P. Dedecker, S. Duwé, R. K. Neely, and J. Zhang, “Localizer: fast, accurate, open-source, and modular software package for superresolution microscopy,” \JournalTitleJournal of Biomedical Optics 17, 126008 (2012).
  33. B. Moeyaert, B. Moeyaert, W. Vandenberg, P. Dedecker, and P. Dedecker, “SOFIevaluator: a strategy for the quantitative quality assessment of SOFI data,” \JournalTitleBiomedical Optics Express 11, 636–648 (2020). Publisher: Optical Society of America.
  34. S. Prost, R. E. B. Kishen, D. C. Kluth, and C. O. C. Bellamy, “Working with Commercially Available Quantum Dots for Immunofluorescence on Tissue Sections,” \JournalTitlePLoS ONE 11 (2016).
  35. X. Zhang, X. Chen, Z. Zeng, M. Zhang, Y. Sun, P. Xi, J. Peng, and P. Xu, “Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (sofi),” \JournalTitleACS Nano 9, 2659–2667 (2015). PMID: 25695314.
  36. S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bsofi),” \JournalTitleOptical Nanoscopy 1, 4 (2012).
  37. E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing,” \JournalTitleOpt. Lett. 30, 1686–1688 (2005).
  38. “Google Drive Folder with data,” https://drive.google.com/drive/folders/13wr-Mt4I7fhkkbsn9qcEt1OsjfmiG9vy?usp=drive_link.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: