Papers
Topics
Authors
Recent
2000 character limit reached

Attacks Against Mobility Prediction in 5G Networks (2402.19319v1)

Published 29 Feb 2024 in cs.CR, cs.LG, and cs.NI

Abstract: The $5{th}$ generation of mobile networks introduces a new Network Function (NF) that was not present in previous generations, namely the Network Data Analytics Function (NWDAF). Its primary objective is to provide advanced analytics services to various entities within the network and also towards external application services in the 5G ecosystem. One of the key use cases of NWDAF is mobility trajectory prediction, which aims to accurately support efficient mobility management of User Equipment (UE) in the network by allocating ``just in time'' necessary network resources. In this paper, we show that there are potential mobility attacks that can compromise the accuracy of these predictions. In a semi-realistic scenario with 10,000 subscribers, we demonstrate that an adversary equipped with the ability to hijack cellular mobile devices and clone them can significantly reduce the prediction accuracy from 75\% to 40\% using just 100 adversarial UEs. While a defense mechanism largely depends on the attack and the mobility types in a particular area, we prove that a basic KMeans clustering is effective in distinguishing legitimate and adversarial UEs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. 3GPP, “Architecture enhancements for 5G System (5GS) to support network data analytics services,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 23.288, 9 2022, version 17.6.0.
  2. ——, “5G System; Network Data Analytics Services; Stage 3,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 29.520, 9 2022, version 17.8.0.
  3. ——, “5G System; Study on enhancement for data collection for NR and ENDC; Stage 3,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 37.817, 9 2022, version 17.0.0.
  4. J. Jeong, D. Roeland, J. Derehag, A. A. Johansson, V. Umaashankar, G. Sun, and G. Eriksson, “Mobility prediction for 5g core networks,” IEEE Communications Standards Magazine, vol. 5, no. 1, 2021.
  5. J. Liu, Y. Yu, F. Standaert, Z. Guo, D. Gu, W. Sun, Y. Ge, and X. Xie, “Cloning 3g/4g sim cards with a pc and an oscilloscope: lessons learned in physical security,” BlackHat USA, 2015.
  6. J. Liu, Y. Yu, F.-X. Standaert, Z. Guo, D. Gu, W. Sun, Y. Ge, and X. Xie, “Small tweaks do not help: Differential power analysis of milenage implementations in 3g/4g usim cards,” in Computer Security – ESORICS 2015.   Cham: Springer International Publishing, 2015, pp. 468–480.
  7. M. Brisfors, S. Forsmark, and E. Dubrova, “How deep learning helps compromising usim,” in Smart Card Research and Advanced Applications: 19th International Conference, CARDIS 2020, Virtual Event, November 18–19, 2020, Revised Selected Papers, 2020, p. 135–150.
  8. J. Zhao, B. Ding, Y. Guo, Z. Tan, and S. Lu, “Securesim: Rethinking authentication and access control for sim/esim,” in Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, ser. MobiCom ’21, New York, NY, USA, 2021, p. 451–464.
  9. P1 Labs Reserach, “Mobile authentication vectors distribution across roaming interfaces,” P1 Labs Reserach, Tech. Rep. B02, 2021. [Online]. Available: https://labs.p1sec.com/2021/09/30/all-authentication-vectors-are-not-made-equal/
  10. S. Weckert, “Google maps hacks,” 2020. [Online]. Available: http://www.simonweckert.com/googlemapshacks.html
  11. 3GPP, “Study on the evolution of cellular internet of things (ciot) security for the 5g system,” 3rd Generation Partnership Project (3GPP), Tech. Rep. TR 33.861, 2019.
  12. G. Solmaz and D. Turgut, “A survey of human mobility models,” IEEE Access, vol. 7, pp. 125 711–125 731, 2019.
  13. Ericsson GAIA, “A framework for simulating mobility patterns in lte,” Internal Link, 2020.
  14. European Commission, “Principles of the gdpr,” 2023. [Online]. Available: https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations_en
  15. Airtel, “Airtel’s open network,” 2016. [Online]. Available: https://www.airtel.in/opennetwork/
  16. S. A. Atiiq, “Dataset of human mobility and the attack on nwdaf,” 2023. [Online]. Available: https://github.com/nwdaf-research/dataset-attack
  17. F. Ekman, A. Keränen, J. Karvo, and J. Ott, “Working day movement model,” in Proceedings of the 1st ACM SIGMOBILE Workshop on Mobility Models, New York, NY, USA, 2008, p. 33–40.
  18. E. Hyytiä and J. Virtamo, “Random waypoint mobility model in cellular networks,” Wireless Networks, vol. 13, no. 2, pp. 177–188, 2007.
  19. M. Dehghani Soltani, A. A. Purwita, Z. Zeng, C. Chen, H. Haas, and M. Safari, “An orientation-based random waypoint model for user mobility in wireless networks,” in 2020 IEEE International Conference on Communications Workshops (ICC Workshops), 2020, pp. 1–6.
  20. X. Ge, J. Ye, Y. Yang, and Q. Li, “User mobility evaluation for 5g small cell networks based on individual mobility model,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, pp. 528–541, 2016.
  21. P. Nain, D. Towsley, B. Liu, and Z. Liu, “Properties of random direction models,” in Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies., vol. 3, 2005.
  22. J. Ariyakhajorn, P. Wannawilai, and C. Sathitwiriyawong, “A comparative study of random waypoint and gauss-markov mobility models in the performance evaluation of manet,” in 2006 International Symposium on Communications and Information Technologies, 2006, pp. 894–899.
  23. Y. Lu, J. Wei, S. Li, J. Zhou, J. Li, J. Jiang, and Z. Su, “A k-means clustering optimization algorithm for spatiotemporal trajectory data,” in Human Centered Computing.   Cham: Springer International Publishing, 2021, pp. 103–113.
  24. C. Wang, Q. Wu, M. Weimer, and E. Zhu, “Flaml: A fast and lightweight automl library,” in MLSys, 2021.
  25. L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001.
  26. P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine learning, vol. 63, pp. 3–42, 2006.
  27. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” in Advances in Neural Information Processing Systems, vol. 30.   Curran Associates, Inc., 2017.
  28. J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algorithm,” Journal of the royal statistical society. series c (applied statistics), vol. 28, no. 1, pp. 100–108, 1979.
  29. T. Kim, J. Kim, H. Ko, S. Seo, Y. Jcon, H. Jeong, S. Lee, and S. Pack, “An implementation study of network data analytic function in 5g,” in IEEE International Conference on Consumer Electronics (ICCE), 2022.
  30. A. Chouman, D. M. Manias, and A. Shami, “Towards supporting intelligence in 5g/6g core networks: Nwdaf implementation and initial analysis,” 2022.
  31. R. Shafin, L. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. C. Zhang, “Artificial intelligence-enabled cellular networks: A critical path to beyond-5g and 6g,” IEEE Wireless Communications, 2020.
  32. J. Jeong, D. Roeland, J. Derehag, Å. A. Johansson, V. Umaashankar, G. Sun, and G. Eriksson, “Mobility prediction for 5g core networks,” IEEE Communications Standards Magazine, vol. 5, no. 1, 2021.
  33. I. Ashraf, Y. B. Zikria, S. Garg, Y. Park, G. Kaddoum, and S. Singh, “Zero touch networks to realize virtualization: Opportunities, challenges, and future prospects,” IEEE Network, vol. 36, no. 6, pp. 251–259, 2022.
  34. M. Zolotukhin, D. Zhang, T. Hämäläinen, and P. Miraghaei, “On attacking future 5g networks with adversarial examples: Survey,” Network, vol. 3, no. 1, pp. 39–90, 2023.
  35. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” in International Conference on Learning Representations, 2014.
  36. W. Soussi, M. Christopoulou, G. Xilouris, and G. Gür, “Moving target defense as a proactive defense element for beyond 5g,” IEEE Communications Standards Magazine, vol. 5, no. 3, pp. 72–79, 2021.
  37. N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense to adversarial perturbations against deep neural networks,” in 2016 IEEE Symposium on Security and Privacy (SP).   Los Alamitos, CA, USA: IEEE Computer Society, may 2016, pp. 582–597.
  38. K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel, “Adversarial examples for malware detection,” in ESORICS: 22nd European Symposium on Research in Computer Security, 2017.   Springer, 2017, pp. 62–79.
  39. E. Anthi, L. Williams, M. Rhode, P. Burnap, and A. Wedgbury, “Adversarial attacks on machine learning cybersecurity defences in industrial control systems,” Journal of Information Security and Applications, vol. 58, p. 102717, 2021.
  40. J. Sternby, E. Thormarker, and M. Liljenstam, “Anomaly detection forest,” in ECAI 2020.   IOS Press, 2020, pp. 1507–1514.
  41. A. Mensi, D. M. Tax, and M. Bicego, “Detecting outliers from pairwise proximities: Proximity isolation forests,” Pattern Recognition, vol. 138, p. 109334, 2023.
  42. F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth IEEE International Conference on Data Mining, 2008, pp. 413–422.
  43. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 IEEE Symposium on Security and Privacy (SP).   Los Alamitos, CA, USA: IEEE Computer Society, may 2017, pp. 39–57.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.