Papers
Topics
Authors
Recent
Search
2000 character limit reached

Inertial spin waves in spin spirals

Published 29 Feb 2024 in cond-mat.mes-hall | (2402.19141v2)

Abstract: Inertial effects in spin dynamics emerge on picosecond time scales, giving rise to nutational excitations at THz frequencies. Here, we describe a general framework for investigating the precessional and nutational excitations in any type of spin structure within linear spin-wave theory. We consider the particular cases of planar and conical spin spirals in detail. We observe a change in the sign of the curvature of the high-frequency nutational spin-wave band as the spiral period is decreased when passing from the ferromagnetic to the antiferromagnetic limit. We identify conditions for the interaction parameters where the curvature changes sign and asymptotical flat bands are formed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. A. Hirohata and K. Takanashi, Journal of Physics D: Applied Physics 47, 193001 (2014).
  2. O. Nikotin, P. A. Lindgård, and O. W. Dietrich, Journal of Physics C: Solid State Physics 2, 1168 (1969).
  3. Y. A. Izyumov, Soviet Physics Uspekhi 27, 845 (1984).
  4. I. Sosnowska, T. P. Neumaier, and E. Steichele, Journal of Physics C: Solid State Physics 15, 4835 (1982).
  5. A. Bauer and C. Pfleiderer, Phys. Rev. B 85, 214418 (2012).
  6. M. Garst, J. Waizner, and D. Grundler, Journal of Physics D: Applied Physics 50, 293002 (2017).
  7. E. Olive, Y. Lansac, and J.-E. Wegrowe, Appl. Phys. Lett. 100, 192407 (2012).
  8. S. Bhattacharjee, L. Nordström, and J. Fransson, Phys. Rev. Lett. 108, 057204 (2012).
  9. H. Suhl, IEEE Trans. Magn. 34, 1834 (1998).
  10. D. Böttcher and J. Henk, Phys. Rev. B 86, 020404(R) (2012).
  11. J.-E. Wegrowe and E. Olive, J. Phys.: Condens. Matter 28, 106001 (2016).
  12. R. Mondal, M. Berritta, and P. M. Oppeneer, J. Phys.: Condens. Matter 30, 265801 (2018).
  13. M. Fähnle, D. Steiauf, and C. Illg, Phys. Rev. B 84, 172403 (2011).
  14. M. Fähnle, D. Steiauf, and C. Illg, Phys. Rev. B 88, 219905(E) (2013).
  15. T. Kikuchi and G. Tatara, Phys. Rev. B 92, 184410 (2015).
  16. M.-C. Ciornei, J. M. Rubí, and J.-E. Wegrowe, Phys. Rev. B 83, 020410(R) (2011).
  17. M. Cherkasskii, M. Farle, and A. Semisalova, Phys. Rev. B 103, 174435 (2021).
  18. M. Cherkasskii, M. Farle, and A. Semisalova, Phys. Rev. B 102, 184432 (2020).
  19. I. Makhfudz, E. Olive, and S. Nicolis, Appl. Phys. Lett. 117, 132403 (2020).
  20. A. M. Lomonosov, V. V. Temnov, and J.-E. Wegrowe, Phys. Rev. B 104, 054425 (2021).
  21. R. Mondal and L. Rózsa, Phys. Rev. B 106, 134422 (2022).
  22. H. Tasaki, Progress of Theoretical Physics 99, 489 (1998).
  23. M. E. Zhitomirsky and H. Tsunetsugu, Phys. Rev. B 70, 100403(R) (2004).
  24. E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett. 106, 236802 (2011).
  25. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
  26. T. Moriya, Phys. Rev. Lett. 4, 228 (1960).
  27. V. P. Flynn, E. Cobanera, and L. Viola, New J. Phys. 22, 083004 (2020).
  28. L. Udvardi and L. Szunyogh, Phys. Rev. Lett. 102, 207204 (2009).
Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 3 likes about this paper.