Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Free energy expansions of a conditional GinUE and large deviations of the smallest eigenvalue of the LUE (2402.18983v3)

Published 29 Feb 2024 in math-ph, math.CV, math.MP, and math.PR

Abstract: We consider a planar Coulomb gas ensemble of size $N$ with the inverse temperature $\beta=2$ and external potential $Q(z)=|z|2-2c \log|z-a|$, where $c>0$ and $a \in \mathbb{C}$. Equivalently, this model can be realised as $N$ eigenvalues of the complex Ginibre matrix of size $(c+1) N \times (c+1) N$ conditioned to have deterministic eigenvalue $a$ with multiplicity $cN$. Depending on the values of $c$ and $a$, the droplet reveals a phase transition: it is doubly connected in the post-critical regime and simply connected in the pre-critical regime. In both regimes, we derive precise large-$N$ expansions of the free energy up to the $O(1)$ term, providing a non-radially symmetric example that confirms the Zabrodin-Wiegmann conjecture made for general planar Coulomb gas ensembles. As a consequence, our results provide asymptotic behaviours of moments of the characteristic polynomial of the complex Ginibre matrix, where the powers are of order $O(N)$. Furthermore, by combining with a duality formula, we obtain precise large deviation probabilities of the smallest eigenvalue of the Laguerre unitary ensemble. Our proof is based on a refined Riemann-Hilbert analysis for planar orthogonal polynomials using the partial Schlesinger transform.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube