Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the exact solution for the Schrödinger equation (2402.18499v3)

Published 28 Feb 2024 in quant-ph, hep-th, math-ph, math.MP, and nucl-th

Abstract: For almost 75 years, the general solution for the Schr\"odinger equation was assumed to be generated by an exponential or a time-ordered exponential known as the Dyson series. We study the unitarity of a solution in the case of a singular Hamiltonian and provide a new methodology that is not based on the assumption that the underlying space is $L{2}(\mathbb{R})$. Then, an alternative operator for generating the time evolution that is manifestly unitary is suggested, regardless of the choice of Hamiltonian. The new construction involves an additional positive operator that normalizes the wave function locally and allows us to preserve unitarity, even when dealing with infinite dimensional or non-normed spaces. Our considerations show that Schr\"odinger and Liouville equations are, in fact, two sides of the same coin and together they provide a unified description for unbounded quantum systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (6)
  1. Lindelöf, E. (1894). "Sur l’application de la méthode des approximations successives aux équations différentielles ordinaires du premier ordre". Comptes rendus hebdomadaires des séances de l’Académie des sciences. 118: 454–7.
  2. Kanwal, R. P. (2004). Generalized functions: theory and applications. Springer Science & Business Media. Johnson, S. G. “When functions have no value(s)”.
  3. Bilenky, S. M. (2013). Introduction to Feynman Diagrams: International Series of Monographs in Natural Philosophy (Vol. 65). Elsevier.
  4. Trotter, H. F. (1958). Approximation of semi-groups of operators.
  5. Berezanskiĭ, I. M. (1968). Expansions in eigenfunctions of selfadjoint operators (Vol. 17). American Mathematical Soc..
  6. M. Lublinsky, and Y. Mulian. "High Energy QCD at NLO: from light-cone wave function to JIMWLK evolution." Journal of High Energy Physics 2017.5 (2017): 1-80.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.