Brick Wall Quantum Circuits with Global Fermionic Symmetry (2402.18440v5)
Abstract: We study brick wall quantum circuits enjoying a global fermionic symmetry. The constituent 2-qubit gate, and its fermionic symmetry, derive from a 2-particle scattering matrix in integrable, supersymmetric quantum field theory in 1+1 dimensions. Our 2-qubit gate, as a function of three free parameters, is of so-called free fermionic or matchgate form, allowing us to derive the spectral structure of both the brick wall unitary $U_F$ and its, non-trivial, hamiltonian limit $H_{\gamma}$ in closed form. We find that the fermionic symmetry pins $H_{\gamma}$ to a surface of critical points, whereas breaking that symmetry leads to non-trivial topological phases. We briefly explore quench dynamics for this class of circuits.
- “The Computational Complexity of Linear Optics” In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing Association for Computing Machinery, 2011 DOI: 10.1145/1993636.1993682
- “Improved simulation of stabilizer circuits” In Phys. Rev. A 70 American Physical Society, 2004 DOI: 10.1103/PhysRevA.70.052328
- “S-matrix of the Yang-Lee edge singularity in two dimensions” In Physics Letters B 225.3, 1989 DOI: https://doi.org/10.1016/0370-2693(89)90818-6
- “A New Solution of the Supersymmetric TJ Model by Means of the Quantum Inverse Scattering Method” arXiv, 1992
- B.U. Felderhof “Diagonalization of the transfer matrix of the free-fermion model. II” In Physica 66.2, 1973, pp. 279–297 DOI: https://doi.org/10.1016/0031-8914(73)90330-3
- B.U. Felderhof “Diagonalization of the transfer matrix of the free-fermion model. III” In Physica 66.3, 1973 DOI: https://doi.org/10.1016/0031-8914(73)90298-X
- B.U. Felderhof “Direct diagonalization of the transfer matrix of the zero-field free-fermion model” In Physica 65.3, 1973 DOI: https://doi.org/10.1016/0031-8914(73)90059-1
- D. Gottesman “The Heisenberg representation of quantum computers”, 1998 URL: https://www.osti.gov/biblio/319738
- “Integrable Floquet Dynamics” In SciPost Phys. 2, 2017 DOI: 10.21468/SciPostPhys.2.3.021
- “Matchgates and classical simulation of quantum circuits” In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464.2100, 2008, pp. 3089–3106 DOI: 10.1098/rspa.2008.0189
- A.Y. Kitaev “Unpaired Majorana fermions in quantum wires” In Physics-Uspekhi 44.10S, 2001 DOI: 10.1070/1063-7869/44/10S/S29
- “Topological properties of the dimerized Kitaev chain with long-range couplings” In Results in Physics 30, 2021 DOI: https://doi.org/10.1016/j.rinp.2021.104837
- “Zero modes of the Kitaev chain with phase-gradients and longer range couplings” In Journal of Physics Communications 2.4 IOP Publishing, 2018 DOI: 10.1088/2399-6528/aab7e5
- “Conserved charges in the quantum simulation of integrable spin chains” In Journal of Physics A: Mathematical and Theoretical 56, 2023 DOI: 10.1088/1751-8121/acc369
- Y. Miao, V. Gritsev and D.V. Kurlov “The Floquet Baxterisation” arXiv, 2022 DOI: 10.48550/arXiv.2206.15142
- “Reflection matrices for integrable N = 1 supersymmetric theories” In Nuclear Physics B 487.3, 1997, pp. 756–778 DOI: https://doi.org/10.1016/S0550-3213(96)00632-3
- “Thermodynamic Bethe Ansatz for N = 1 supersymmetric theories” In Nuclear Physics B 464.3, 1996 DOI: https://doi.org/10.1016/0550-3213(95)00649-4
- K. Schoutens “Supersymmetry and factorizable scattering” In Nuclear Physics B 344.3, 1990 DOI: 10.1016/0550-3213
- N. Slavnov “Algebraic Bethe Ansatz and Correlation Functions” World Scientific, 2022
- “Classical simulation of noninteracting-fermion quantum circuits” In Phys. Rev. A 65 American Physical Society, 2002 DOI: 10.1103/PhysRevA.65.032325
- “Topological Invariants for Spin-Orbit Coupled Superconductor Nanowires” In Phys. Rev. Lett. 109 American Physical Society, 2012 DOI: 10.1103/PhysRevLett.109.150408
- L.G. Valiant “Quantum Circuits That Can Be Simulated Classically in Polynomial Time” In SIAM Journal on Computing 31.4, 2002 DOI: 10.1137/S0097539700377025
- M. Van den Nest “Universal Quantum Computation with Little Entanglement” In Phys. Rev. Lett. 110 American Physical Society, 2013 DOI: 10.1103/PhysRevLett.110.060504
- M. Vanicat, L. Zadnik and T. Prosen “Integrable Trotterization: Local Conservation Laws and Boundary Driving” In Phys. Rev. Lett. 121, 2018 DOI: 10.1103/PhysRevLett.121.030606
- “Integrable Digital Quantum Simulation: Generalized Gibbs Ensembles and Trotter Transitions” In Phys. Rev. Lett. 130 American Physical Society, 2023 DOI: 10.1103/PhysRevLett.130.260401
- G. Vidal “Efficient Classical Simulation of Slightly Entangled Quantum Computations” In Phys. Rev. Lett. 91 American Physical Society, 2003 DOI: 10.1103/PhysRevLett.91.147902
- “Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor” In Phys. Rev. B 90 American Physical Society, 2014 DOI: 10.1103/PhysRevB.90.014505
- J. Wouters, H. Katsura and D. Schuricht “Exact ground states for interacting Kitaev chains” In Physical Review B 98.15 American Physical Society (APS), 2018 DOI: 10.1103/physrevb.98.155119
- A.B. Zamolodchikov “Integrals of motion and S-matrix of the (scaled) T=Tc Ising model with magnetic field” In International Journal of Modern Physics A 4.16, 1989
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.