Papers
Topics
Authors
Recent
2000 character limit reached

The Neumann-Moser dynamical system and the Korteweg-de Vries hierarchy

Published 28 Feb 2024 in nlin.SI, math-ph, math.DS, and math.MP | (2402.18079v1)

Abstract: At the focus of the paper are applications of the well-known Moser transformation of the C. Neumann dynamical system. It yields us a new quadratic integrable dynamical system on $\mathbb{C}{3n+1}$, which we call the Neumann-Moser dynamical system. We present an explicit formula of the inverse of the Moser transformation. Consequently, we obtain explicitly an invertible transformation of the Uhlenbeck-Devaney integrals of the Neumann system into the integrals of our system. One of the main results of the paper is the recurrent solutions of the Neumann-Moser system. We show that every solution of our system solves the Mumford dynamical system, and vice versa. Every solution of the Neumann-Moser system is proven to solve the stationary Korteweg-de Vries hierarchy. As a corollary, we construct explicit solutions of the Neumann-Moser system in hyperelliptic Kleinian functions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. H. F. Baker.  On the hyperelliptic sigma functions. Amer. Journ. Math. 20 (1898), pp. 301–384.
  2. P. G. Baron.  The Mumford dynamical system and the Gelfand–Dikii recursion. Funct. Anal. & Appl. 57:4 (2023), pp. 17–26 (in Russian); arXiv: 2402.16975.
  3. V. M. Buchstaber.  The Mumford Dynamical System and Hyperelliptic Kleinian Functions. Funct. Anal. & Appl. 57:4 (2023), pp. 27–45 (in Russian); arXiv: 2402.09218.
  4. R. Devaney.  Transversal homoclinic orbits in an integrable system. Am. Journal Math. 100 (1978), pp. 631–642.
  5. H. Knörrer.  Geodesics on quadrics and a mechanical problem of C. Neumann. J. Reine Angew. Math. 334 (1982), pp. 69–78.
  6. J. Moser.  Various Aspects of Integrable Hamiltonian Systems. Progr. in Math. 8 (1980), pp. 233–289.
  7. J. Moser.  Integrable Hamiltonian systems and spectral theory. Lezioni Fermiane [Fermi Lectures]. Scuola Normale Superiore, Pisa (1983).
  8. A. Newell.  Solitons in Mathematics and Physics. CBMS-NSF Reg. Conf. Ser. in Appl. Math. 48 by SIAM (1987).
  9. S. P. Novikov.  The periodic problem for the Korteweg–de Vries equation. Funct. Anal. & Appl. 8:3 (1974), pp. 236–246.
  10. K. Uhlenbeck.  Minimal 2222-spheres and tori in Sksuperscript𝑆𝑘S^{k}italic_S start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. Informal preprint (1975).
  11. P. Vanhaecke.  Integrable Systems in the realm of Algebraic Geometry. Springer-Verlag Berlin Heidelberg (1996).
  12. A. P. Veselov.  Finite-zone potentials and integrable systems on a sphere with quadratic potential. Funct. Anal. & Appl. 14:1 (1980), pp. 37–39.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.