The Neumann-Moser dynamical system and the Korteweg-de Vries hierarchy (2402.18079v1)
Abstract: At the focus of the paper are applications of the well-known Moser transformation of the C. Neumann dynamical system. It yields us a new quadratic integrable dynamical system on $\mathbb{C}{3n+1}$, which we call the Neumann-Moser dynamical system. We present an explicit formula of the inverse of the Moser transformation. Consequently, we obtain explicitly an invertible transformation of the Uhlenbeck-Devaney integrals of the Neumann system into the integrals of our system. One of the main results of the paper is the recurrent solutions of the Neumann-Moser system. We show that every solution of our system solves the Mumford dynamical system, and vice versa. Every solution of the Neumann-Moser system is proven to solve the stationary Korteweg-de Vries hierarchy. As a corollary, we construct explicit solutions of the Neumann-Moser system in hyperelliptic Kleinian functions.
- H. F. Baker. On the hyperelliptic sigma functions. Amer. Journ. Math. 20 (1898), pp. 301–384.
- P. G. Baron. The Mumford dynamical system and the Gelfand–Dikii recursion. Funct. Anal. & Appl. 57:4 (2023), pp. 17–26 (in Russian); arXiv: 2402.16975.
- V. M. Buchstaber. The Mumford Dynamical System and Hyperelliptic Kleinian Functions. Funct. Anal. & Appl. 57:4 (2023), pp. 27–45 (in Russian); arXiv: 2402.09218.
- R. Devaney. Transversal homoclinic orbits in an integrable system. Am. Journal Math. 100 (1978), pp. 631–642.
- H. Knörrer. Geodesics on quadrics and a mechanical problem of C. Neumann. J. Reine Angew. Math. 334 (1982), pp. 69–78.
- J. Moser. Various Aspects of Integrable Hamiltonian Systems. Progr. in Math. 8 (1980), pp. 233–289.
- J. Moser. Integrable Hamiltonian systems and spectral theory. Lezioni Fermiane [Fermi Lectures]. Scuola Normale Superiore, Pisa (1983).
- A. Newell. Solitons in Mathematics and Physics. CBMS-NSF Reg. Conf. Ser. in Appl. Math. 48 by SIAM (1987).
- S. P. Novikov. The periodic problem for the Korteweg–de Vries equation. Funct. Anal. & Appl. 8:3 (1974), pp. 236–246.
- K. Uhlenbeck. Minimal 2222-spheres and tori in Sksuperscript𝑆𝑘S^{k}italic_S start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. Informal preprint (1975).
- P. Vanhaecke. Integrable Systems in the realm of Algebraic Geometry. Springer-Verlag Berlin Heidelberg (1996).
- A. P. Veselov. Finite-zone potentials and integrable systems on a sphere with quadratic potential. Funct. Anal. & Appl. 14:1 (1980), pp. 37–39.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.