Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

How to Partition a Quantum Observable (2402.17908v1)

Published 27 Feb 2024 in quant-ph

Abstract: We present a partition of quantum observables in an open quantum system which is inherited from the division of the underlying Hilbert space or configuration space. It is shown that this partition leads to the definition of an inhomogeneous continuity equation for generic, non-local observables. This formalism is employed to describe the local evolution of the von Neumann entropy of a system of independent quantum particles out of equilibrium. Crucially, we find that all local fluctuations in the entropy are governed by an entropy current operator, implying that the production of entanglement entropy is not measured by this partitioned entropy. For systems linearly perturbed from equilibrium, it is shown that this entropy current is equivalent to a heat current, provided that the system-reservoir coupling is partitioned symmetrically. Finally, we show that any other partition of the coupling leads directly to a divergence of the von Neumann entropy. Thus, we conclude that Hilbert-space partitioning is the only partition of the von Neumann entropy which is consistent with the Laws of Thermodynamics.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.