Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Efficient simulations of Hartree--Fock equations by an accelerated gradient descent method (2402.17843v1)

Published 27 Feb 2024 in physics.comp-ph, cond-mat.other, and nlin.PS

Abstract: We develop convergence acceleration procedures that enable a gradient descent-type iteration method to efficiently simulate Hartree--Fock equations for atoms interacting both with each other and with an external potential. Our development focuses on three aspects: (i) optimization of a parameter in the preconditioning operator; (ii) adoption of a technique that eliminates the slowest-decaying mode to the case of many equations (describing many atoms); and (iii) a novel extension of the above technique that allows one to eliminate multiple modes simultaneously. We illustrate performance of the numerical method for the 2D model of the first layer of helium atoms above a graphene sheet. We demonstrate that incorporation of aspects (i) and (ii) above into the ``plain" gradient descent method accelerates it by at least two orders of magnitude, and often by much more. Aspect (iii) -- a multiple-mode elimination -- may bring further improvement to the convergence rate compared to aspect (ii), the single-mode elimination. Both single- and multiple-mode elimination techniques are shown to significantly outperform the well-known Anderson Acceleration. We believe that our acceleration techniques can also be gainfully employed by other numerical methods, especially those handling hard-core-type interaction potentials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. M. Gordillo and J. Boronat, Zero-temperature phase diagram of the second layer of 44{}^{4}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPTHe adsorbed on graphene, Phys. Rev. B 85, 195457 (2012).
  2. M. C. Gordillo and J. Boronat, Superfluid and Supersolid Phases of 44{}^{4}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPThe on the Second Layer of Graphite, Phys. Rev. Lett. 124, 205301 (2020).
  3. W. Steele, The physical interaction of gases with crystalline solids, Surf. Sci. 36, 317 (1973).
  4. S. Goedecker, Linear scaling electronic structure methods, Rev. Mod. Phys. 71, 1085 (1999).
  5. J. D. Talman, Numerical solution of the Hartree-Fock equation in molecular geometries, Phys. Rev. A 82, 052518 (2010).
  6. J. Dziedzic, Q. Hill, and C.-K. Skylaris, Linear-scaling calculation of Hartree-Fock exchange energy with non-orthogonal generalised Wannier functions, J. Chem. Phys. 139, 214103 (2013).
  7. D. Anderson, Iterative procedures for nonlinear integral equations, J. ACM 12, 547 (1965).
  8. S. Duminil and H. Sadok, Reduced rank extrapolation applied to electronic structure computations, Electron. Trans. Numer. Anal. 38, 347 (2011).
  9. H. F. Walker and P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal. 49, 1715 (2011).
  10. W. Ryssens, M. Bender, and P.-H. Heenen, Iterative approaches to the self-consistent nuclear energy density functional problem: Heavy ball dynamics and potential preconditioning, Eur. Phys. J. A 55, 93 (2019).
  11. M. P. Marder, Condensed matter physics (Wiley, 2015) Chap. 9.2.
  12. D. Masiello, S. B. McKagan, and W. P. Reinhardt, Multiconfigurational Hartree-Fock theory for identical bosons in a double well, Phys. Rev. A 72, 063624 (2005).
  13. R. A. Aziz, A. R. Janzen, and M. R. Moldover, Ab initio calculations for helium: A standard for transport property measurements, Phys. Rev. Lett. 74, 1586 (1995).
  14. T. I. Lakoba, Convergence conditions for iterative methods seeking multi-component solitary waves with prescribed quadratic conserved quantities, Math. Comput. Simul. 81, 1572 (2011).
  15. T. Lakoba and J. Yang, A mode elimination technique to improve convergence of iteration methods for finding solitary waves, J. Comput. Phys. 226, 1693 (2007).
  16. J. Yang and T. Lakoba, Accelerated imaginary-time evolution methods for the computation of solitary waves, Stud. Appl. Math. 120, 265 (2008).
  17. M. Tuckerman, B. Berne, and G. Martyna, Reversible multiple time scale molecular dynamics, J. Chem. Phys. 97, 1990 (1992).
  18. J. Izaguirre, S. Reich, and R. Skeel, Longer time steps for molecular dynamics, J. Chem. Phys. 110, 9853 (1999).
  19. T. I. Lakoba, Conjugate gradient method for finding fundamental solitary waves, Physica D: Nonlinear Phenomena 238, 2308 (2009).
  20. J. R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, Tech. Rep. (Pittsburgh, PA, 1994).
  21. P. A. Whitlock, G. V. Chester, and B. Krishnamachari, Monte Carlo simulation of a helium film on graphite, Phys. Rev. B 58, 8704 (1998).
  22. Y. Kwon and D. Ceperley, 44{}^{4}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPTHe adsorption on a single graphene sheet: Path-integral Monte Carlo study, Phys. Rev. B 85, 224501 (2012).
  23. M. Skorobogatiy and J. Yang, Fundamentals of photonic crystal guiding (Cambridge University Press, 2009) Chap. 7.2.
  24. M. C. Gordillo and J. Boronat, He4superscriptHe4{}^{4}\mathrm{He}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_He on a single graphene sheet, Phys. Rev. Lett. 102, 085303 (2009).
  25. M. Gordillo, Diffusion Monte Carlo calculations of the phase diagram of He4superscriptHe4{}^{4}\mathrm{He}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_He on corrugated graphene, Phys. Rev. B 89, 155401 (2014).
  26. S. Wessel and M. Troyer, Supersolid hard-core bosons on the triangular lattice, Phys. Rev. Lett. 95, 127205 (2005).
  27. D. Yamamoto, A. Masaki, and I. Danshita, Quantum phases of hardcore bosons with long-range interactions on a square lattice, Phys. Rev. B 86, 054516 (2012).
  28. S. Streib and P. Kopietz, Hard-core boson approach to the spin−12spin12\text{spin}-\frac{1}{2}spin - divide start_ARG 1 end_ARG start_ARG 2 end_ARG triangular-lattice antiferromagnet Cs2⁢CuCl4subscriptCs2subscriptCuCl4{\mathrm{Cs}}_{2}{\mathrm{CuCl}}_{4}roman_Cs start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_CuCl start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT at finite temperatures in magnetic fields higher than the saturation field, Phys. Rev. B 92, 094442 (2015).
  29. R. K. Barik and L. M. Woods, High throughput calculations for a dataset of bilayer materials, Scientific Data 10, 1038 (2023).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube