Stochastic homogenization of quasiconvex degenerate viscous HJ equations in 1d
Abstract: We prove homogenization for degenerate viscous Hamilton-Jacobi equations in dimension one in stationary ergodic environments with a quasiconvex and superlinear Hamiltonian of fairly general type. We furthermore show that the effective Hamiltonian is quasiconvex. This latter result is new even in the periodic setting, despite homogenization has been known for quite some time.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.