Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Nuclear spin relaxation mediated by donor-bound and free electrons in wide CdTe quantum wells (2402.17435v3)

Published 27 Feb 2024 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: The nuclear spin systems in CdTe/(Cd,Zn)Te and CdTe/(Cd,Mg)Te quantum wells (QW) are studied using a multistage technique combining optical pumping and Hanle effect-based detection. The samples demonstrate drastically different nuclear spin dynamics in zero and weak magnetic fields. In CdTe/(Cd,Zn)Te, the nuclear spin relaxation time is found to strongly increase with the magnetic field, growing from 3 s in zero field to tens of seconds in a field of 25 G. In CdTe/(Cd,Mg)Te the relaxation is an order of magnitude slower, and it is field-independent up to at least 70 G. The differences are attributed to the nuclear spin relaxation being mediated by different kinds of resident electrons in these QWs. In CdTe/(Cd,Mg)Te, a residual electron gas trapped in the QW largely determines the relaxation dynamics. In CdTe/(Cd,Zn)Te, the fast relaxation in zero field is due to interaction with localized donor-bound electrons. Nuclear spin diffusion barriers form around neutral donors when the external magnetic field exceeds the local nuclear field, which is about $B_L\approx$0.4 G in CdTe. This inhibits nuclear spin diffusion towards the donors, slowing down relaxation. These findings are supported by theoretical modeling. In particular, we show that the formation of the diffusion barrier is made possible by several features specific to CdTe: (i) the large donor binding energy (about 10 meV), (ii) the low abundance of magnetic isotopes (only $\approx$30 % of nuclei have nonzero spin), and (iii) the absence of nuclear quadrupole interactions between nuclei. The two latter properties are also favorable to nuclear spin cooling via optical pumping followed by adiabatic demagnetization. Under non-optimized conditions we have reached sub-microkelvin nuclear spin temperatures in both samples, lower than all previous results obtained in GaAs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. I. A. Merkulov, A. L. Efros, and M. Rosen, Electron spin relaxation by nuclei in semiconductor quantum dots, Phys. Rev. B 65, 205309 (2002).
  2. A. V. Khaetskii, D. Loss, and L. Glazman, Electron spin decoherence in quantum dots due to interaction with nuclei, Phys. Rev. Lett. 88, 186802 (2002).
  3. E. A. Chekhovich, S. F. C. da Silva, and A. Rastelli, Nuclear spin quantum register in an optically active semiconductor quantum dot, Nature Nanotechnology 15, 999 (2020).
  4. As determined from the data in Ref. [42] following Refs. [50, 15].
  5. A. Abragam and W. G. Proctor, Spin temperature, Phys. Rev. 109, 1441 (1958).
  6. G. R. Khutsishvili, Spin diffusion, Soviet Physics Uspekhi 8, 743 (1966).
  7. D. Paget, Optical detection of NMR in high-purity GaAs: Direct study of the relaxation of nuclei close to shallow donors, Phys. Rev. B 25, 4444 (1982).
  8. Z.-X. Gong, Z.-q. Yin, and L.-M. Duan, Dynamics of the overhauser field under nuclear spin diffusion in a quantum dot, New Journal of Physics 13, 033036 (2011).
  9. J. Korringa, Nuclear magnetic relaxation and resonnance line shift in metals, Physica 16, 601 (1950).
  10. J. M. Francou, K. Saminadayar, and J. L. Pautrat, Shallow donors in CdTe, Phys. Rev. B 41, 12035 (1990).
  11. T. Schmidt, K. Lischka, and W. Zulehner, Excitation-power dependence of the near-band-edge photoluminescence of semiconductors, Phys. Rev. B 45, 8989 (1992).
  12. F. Meier and B. P. Zakharchenya, Optical Orientation (North-Holland, Amsterdam, 1984).
  13. A. W. Overhauser, Polarization of nuclei in metals, Phys. Rev. 92, 411 (1953).
  14. A. Nolle, Direct and indirect dipole-dipole coupling between 111111{}^{111}start_FLOATSUPERSCRIPT 111 end_FLOATSUPERSCRIPTCd,113113{}^{113}start_FLOATSUPERSCRIPT 113 end_FLOATSUPERSCRIPTCd and 125125{}^{125}start_FLOATSUPERSCRIPT 125 end_FLOATSUPERSCRIPTTe in solid CdTe, Zeitschrift für Physik B Condensed Matter 34, 175 (1979).
  15. I. J. H. Leung and C. A. Michal, Optical enhancement of NMR signals in CdTe, Phys. Rev. B 70, 035213 (2004).
  16. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, UK, 1961).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: