Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 171 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

New Prospects for a Causally Local Formulation of Quantum Theory (2402.16935v1)

Published 26 Feb 2024 in quant-ph and physics.hist-ph

Abstract: It is difficult to extract reliable criteria for causal locality from the limited ingredients found in textbook quantum theory. In the end, Bell humbly warned that his eponymous theorem was based on criteria that "should be viewed with the utmost suspicion." Remarkably, by stepping outside the wave-function paradigm, one can reformulate quantum theory in terms of old-fashioned configuration spaces together with 'unistochastic' laws. These unistochastic laws take the form of directed conditional probabilities, which turn out to provide a hospitable foundation for encoding microphysical causal relationships. This unistochastic reformulation provides quantum theory with a simpler and more transparent axiomatic foundation, plausibly resolves the measurement problem, and deflates various exotic claims about superposition, interference, and entanglement. Making use of this reformulation, this paper introduces a new principle of causal locality that is intended to improve on Bell's criteria, and shows directly that systems that remain at spacelike separation cannot exert causal influences on each other, according to that new principle. These results therefore lead to a general hidden-variables interpretation of quantum theory that is arguably compatible with causal locality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. B. Skyrms. “Counterfactual Definiteness and Local Causation”. Philosophy of Science, 49(1):43–50, March 1982. URL: https://doi.org/10.1086/289033;https://www.jstor.org/stable/186879, doi:10.1086/289033.
  2. B. Skyrms. “EPR: Lessons for Metaphysics”. Midwest Studies in Philosophy, 9(1):245–255, September 1984. doi:10.1111/j.1475-4975.1984.tb00062.x.
  3. “A General Argument Against Superluminal Transmission Through the Quantum Mechanical Measurement Process”. Lettere al Nuovo Cimento, 27(10):293–298, 1980. doi:10.1007/BF02817189.
  4. T. F. Jordan. “Quantum Correlations do not Transmit Signals”. Physics Letters A, 94(6):264, 1983. doi:10.1016/0375-9601(83)90713-2.
  5. “Cluster Decomposition Properties of the S𝑆Sitalic_S Matrix”. Physical Review, 132(6):2788–2799, December 1963. doi:10.1103/PhysRev.132.2788.
  6. S. Weinberg. The Quantum Theory of Fields, Volume 1. Cambridge University Press, 1996.
  7. D. Howard. “Einstein on Locality and Separability”. Studies in History and Philosophy of Science Part A, 16(3):171–201, 1985. doi:10.1016/0039-3681(85)90001-9.
  8. D. Howard. “Holism, Separability, and the Metaphysical Implications of the Bell Experiments”. In J. T. Cushing and E. McMullin, editors, Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem, pages 224–253. University of Notre Dame Press Notre Dame, 1989.
  9. “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”. Physical Review, 47(10):777–780, May 1935. doi:10.1103/PhysRev.47.777.
  10. J. S. Bell. “On the Einstein-Podolsky-Rosen Paradox”. Physics, 1(3):195–200, 1964.
  11. “Proposed Experiment to Test Local Hidden-Variable Theories”. Physical Review Letters, 23(15):880–884, October 1969. doi:10.1103/PhysRevLett.23.880.
  12. J. S. Bell. “The Theory of Local Beables”. CERN, 1975. URL: https://cds.cern.ch/record/980036/files/197508125.pdf.
  13. J. S. Bell. “Bertlmann’s Socks and the Nature of Reality”. Journal de Physique Colloque, 42(C2):C2–41, March 1981. doi:10.1051/jphyscol:1981202.
  14. “Going Beyond Bell’s Theorem”. In Bell’s Theorem, Quantum Theory and Conceptions of the Universe, Fundamental Theories of Physics, pages 69–72. Springer, 1989. arXiv:0712.0921, doi:10.1007/978-94-017-0849-4_10.
  15. J. S. Bell. “La Nouvelle Cuisine”. In A. Sarlemijn and P. Kroes, editors, Between Science and Technology, pages 97–115. Elsevier, 1990.
  16. N. D. Mermin. “Quantum Mysteries Revisited”. American Journal of Physics, 58(8):731–734, 1990. URL: http://dx.doi.org/10.1119/1.16503.
  17. J. A. Barandes. “The Stochastic-Quantum Correspondence”, 2023. URL: https://arxiv.org/abs/2302.10778, arXiv:2302.10778.
  18. J. A. Barandes. “The Stochastic-Quantum Theorem”, 2023. URL: https://arxiv.org/abs/2309.03085, arXiv:2309.03085.
  19. E. Schrödinger. “Discussion of Probability Relations between Separated Systems”. Mathematical Proceedings of the Cambridge Philosophical Society, 31(04):555–563, October 1935. URL: http://journals.cambridge.org/article_S0305004100013554, doi:10.1017/S0305004100013554.
  20. E. Schrödinger. “Probability Relations Between Separated Systems”. Mathematical Proceedings of the Cambridge Philosophical Society, 32(3):446–452, 1936. doi:10.1017/S0305004100019137.
  21. A. Einstein. “Letter to Max Born”, March 1947.
  22. L. de Broglie. An Introduction to the Study of Wave Mechanics. E. P. Dutton and Company, Inc., 1930.
  23. D. J. Bohm. “A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables. I”. Physical Review, 85(2):166–179, January 1952. doi:10.1103/PhysRev.85.166.
  24. D. J. Bohm. “A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables. II”. Physical Review, 85(2):180–193, January 1952. doi:10.1103/PhysRev.85.180.
  25. “The Nobel Prize in Physics 2022”. Nobel Prize Official Website, 2022. Awarded for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science. URL: https://www.nobelprize.org/prizes/physics/2022/summary.
  26. J. Woodward. “Causation and Manipulability”. In E. N. Zalta and U. Nodelman, editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2023 edition, 2023. URL: https://plato.stanford.edu/archives/sum2023/entries/causation-mani.
  27. H. Everett III. “ ‘Relative State’ Formulation of Quantum Mechanics”. Reviews of Modern Physics, 29(3):454–462, July 1957. doi:10.1103/RevModPhys.29.454.
  28. H. Everett III. “The Theory of the Universal Wave Function”. In The Many-Worlds Interpretation of Quantum Mechanics, Volume 1, page 3, 1973.
  29. B. S. DeWitt. “Quantum mechanics and reality”. Physics Today, 23(9):30–35, September 1970. URL: http://scitation.aip.org/content/aip/magazine/physicstoday/article/23/9/10.1063/1.3022331, doi:10.1063/1.3022331.
  30. “Bell’s Theorem”. In E. N. Zalta and U. Nodelman, editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2024 edition, 2024. URL: https://plato.stanford.edu/archives/spr2024/entries/bell-theorem.
  31. J. J. Sakurai. Modern Quantum Mechanics. Addison Wesley, revised edition, 1993.
  32. R. Shankar. Principles of Quantum Mechanics. Plenum Press, 2nd edition, 1994.
  33. Introduction to Quantum Mechanics. Cambridge University Press, 3rd edition, 2018.
  34. J. von Neumann. “Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik”. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1927:245–272, 1927. URL: https://eudml.org/doc/59230.
  35. J. von Neumann. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer, 1932.
  36. J. von Neumann. Mathematical Foundations of Quantum Mechanics: New Edition. Princeton University Press, 2018. With the English translation by Robert T. Beyer, and edited by Nicholas A. Wheeler.
  37. G. Hermann. “Der Zirkel in Neumann’s Beweis (Section 7 of Die Naturphilosophischen Grundlagen de Quantenmechanik)”. Die Naturphilosophischen Grundlagen de Quantenmechanik, 1935.
  38. M. Seevinck. “Challenging the Gospel: Grete Hermann on von Neumann’s No-Hidden-Variables Proof”. In Grete Hermann: Between Physics and Philosophy, Volume 42, pages 107–117. Springer, October 2017. doi:10.1007/978-94-024-0970-3_7.
  39. J. S. Bell. “On the Problem of Hidden Variables in Quantum Mechanics”. Reviews of Modern Physics, 38(3):447–452, July 1966. doi:10.1103/RevModPhys.38.447.
  40. G. Bacciagaluppi. “The Statistical Interpretation: Born, Heisenberg and von Neumann, 1926-27”. October 2021. URL: http://philsci-archive.pitt.edu/19650.
  41. A. Shimony. “Events and Processes in the Quantum World”. In R. Penrose and C. Isham, editors, Quantum Concepts in Space and Time, pages 182–203. Oxford University Press, Oxford, 1986. Reprinted in Shimony (1993), 140–162.
  42. H. Reichenbach. The Direction of Time, Volume 65. Univ of California Press, 1956.
  43. C. Hitchcock and M. Rédei. “Reichenbach’s Common Cause Principle”. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2021 edition, 2021. URL: https://plato.stanford.edu/archives/sum2021/entries/physics-Rpcc.
  44. W. G. Unruh. “Is Quantum Mechanics Non-Local?”. In T. Placek and J. Butterfield, editors, Non-Locality and Modality, pages 125–136. Springer, 2002. doi:10.1007/978-94-010-0385-8_8.
  45. M. Frisch. “Causation in Physics”. In E. N. Zalta and U. Nodelman, editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2023 edition, 2023. URL: https://plato.stanford.edu/archives/win2023/entries/causation-physics.
  46. “A Strong No-Go Theorem on the Wigner’s Friend Paradox”. Nature Physics, August 2020. arXiv:1907.05607, doi:10.1038/s41567-020-0990-x.
  47. F. A. Bopp. “Quantenmechanische Statistik und Korrelationsrechnung”. Zeitschrift für Naturforschung A, 2(4):202–216, 1947. doi:10.1515/zna-1947-0402.
  48. F. A. Bopp. “Ein für die Quantenmechanik bemerkenswerter Satz der Korrelationsrechnung”. Zeitschrift für Naturforschung A, 7(1):82–87, 1952. doi:10.1515/zna-1952-0117.
  49. F. A. Bopp. “Statistische Untersuchung des Grundprozesses der Quantentheorie der Elementarteilchen”. Zeitschrift für Naturforschung A, 8(1):6–13, 1953. doi:10.1515/zna-1953-0103.
  50. I. Fényes. “Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik”. Zeitschrift für Physik, 132(1):81–106, February 1952. doi:10.1007/BF01338578.
  51. E. Nelson. “Dynamical Theories of Brownian Motion”. 1967.
  52. E. Nelson. “Quantum Fluctuations”. 1985.
  53. “Unified Dynamics for Microscopic and Macroscopic Systems”. Physical Review D, 34(2):470–491, 1986. doi:10.1103/PhysRevD.34.470.
  54. E. C. G. Stueckelberg. “Quantum Theory in Real Hilbert Space”. Helvetica Physica Acta, 33(4):727–752, 1960. URL: https://www.e-periodica.ch/digbib/view?pid=hpa-001:1960:33::715#735.
  55. “Dividing Quantum Channels”. Communications in Mathematical Physics, 279:147–168, 2008. arXiv:math-ph/0611057, doi:10.1007/s00220-008-0411-y.
  56. S. Milz and K. Modi. “Quantum Stochastic Processes and Quantum Non-Markovian Phenomena”. PRX Quantum, 2:030201, May 2021. URL: https://dx.doi.org/10.1103/PRXQuantum.2.030201, arXiv:2012.01894v2, doi:10.1103/PRXQuantum.2.030201.
  57. A. Horn. “Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix”. American Journal of Mathematics, 76(3):620–630, 1954. doi:10.2307/2372705.
  58. R. C. Thompson. “Lecture notes from a Johns Hopkins University lecture series”. Unpublished lecture notes, 1989.
  59. W. F. Stinespring. “Positive functions on C*-algebras”. Proceedings of the American Mathematical Society, 6(2):211–216, April 1955. doi:10.2307/2032342.
  60. M. H. Stone. “Linear Transformations in Hilbert Space”. Proceedings of the National Academy of Sciences, 16(2):172–175, 1930. doi:10.1073/pnas.16.2.172.
  61. J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.
  62. E. Schrödinger. “An Undulatory Theory of the Mechanics of Atoms and Molecules”. Physical Review, 28(6):1049–1070, December 1926. doi:10.1103/PhysRev.28.1049.
  63. W. Heisenberg. Physics and Philosophy: The Revolution in Modern Science. Harper & Brothers Publishers, 1958.
Citations (1)

Summary

  • The paper replaces Bell's local causality with a refined principle using directed conditional probabilities to realign quantum dynamics.
  • The research introduces a unistochastic formulation where transition probabilities from unitary operations underpin deterministic quantum behavior.
  • The study offers practical insights to reconcile quantum interference and measurement challenges through a clearer, causally local stochastic framework.

An Examination of a Causally Local Formulation of Quantum Theory

The paper "New Prospects for a Causally Local Formulation of Quantum Theory" by Jacob A. Barandes investigates a reformulation of quantum theory aimed at resolving long-standing issues related to causal locality. The research proposes a unistochastic framework, diverging from conventional approaches that revolve around the complexities of wave functions. At its core, this framework is conceived as an attempt to clarify causal relationships on a microphysical level, rekindling the discourse on causation within quantum mechanics which has been elusive under the traditional, interventionist lens.

Context and Objectives

Historically, quantum theory's relationship with nonlocality has been intensely debated. The Einstein-Podolsky-Rosen (EPR) paradox and Bell's theorem have suggested that quantum mechanics entails some form of nonlocal interaction, whether through "spooky action at a distance" as posited by Einstein or the implicatory conclusions of Bell's work on hidden variables. One of the critical challenges has been formulating coherent criteria for causal locality amidst quantum entanglement and the violation of inequalities predicted by local theories.

Barandes embarks on this reformulation by defining the processes in quantum mechanics as governed by directed conditional probabilities. These probabilities act as microphysical laws for stochastic processes, decoupling from the reliance on entangled wave functions or differential equations typically used in describing quantum systems. This novel presentation draws from Bayesian networks that model causal structures in terms of directed graphs, offering a language wherein causal inference aligns with probabilistic dependencies.

Major Claims and Contributions

  • Replacement of Bell's Criterion: The paper critiques and subsequently replaces Bell's criterion of local causality with a refined principle. Barandes proposes that systems remaining at spacelike separation during a quantum process can be viewed as not exerting causal influences on one another within this new framework. This perspective challenges Reichenbach's principle of common causes by offering stochastic interactions as the basis of causal linkages, which need not conform to classical factorization.
  • Unistochastic Formulation: The introduction of a unistochastic matrix, wherein transition probabilities correspond to the square magnitudes derived from unitary operations, provides a deterministic underpinning that realigns quantum probabilities with classical configurations. This theoretical construct aims to reconcile the algebra of measurement probabilities with the dynamics of quantum evolution.
  • Microphysical Causation: By employing the directedness inherent in conditional probability, Barandes develops a framework where causation is neither obscure nor erroneously interventionist. The character of causality thus derived becomes analytically tractable, permitting an examination of quantum systems as inherently stochastic entities.
  • Practical and Theoretical Implications: The approach practically mitigates many of the interpretational struggles with phenomena like superposition, interference, and the measurement problem. Theoretically, it suggests the plausibility of a hidden-variables model that remains compatible with the constraints of causal locality, contradicting the predominant assumption that quantum mechanics inherently defies local realism.

Significance and Future Directions

The significance of Barandes' unistochastic model lies in its potential to offer a reformulation of quantum theory that better harmonizes with intuitive notions of causality and locality. While the paper does not purport to overhaul quantum mechanics radically, it presents an innovative approach that challenges entrenched views and opens the door to further exploration of quantum causal dynamics. Future research pathways may include deeper empirical scrutiny or computational simulations validating the unistochastic model against quantum correlation data and potentially developing practical algorithms or technologies guided by this reformulation.

In essence, this reformulation embodies a rigorous effort to provide clearer causal underpinnings to quantum mechanics, fostering an environment where contemporary interpretations can be tested against a framework designed for clarity and causal coherence.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 11 tweets and received 423 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com