Papers
Topics
Authors
Recent
2000 character limit reached

Strong coupling yields abrupt synchronization transitions in coupled oscillators (2402.16471v1)

Published 26 Feb 2024 in math.DS

Abstract: Coupled oscillator networks often display transitions between qualitatively different phase-locked solutions -- such as synchrony and rotating wave solutions -- following perturbation or parameter variation. In the limit of weak coupling, these transitions can be understood in terms of commonly studied phase approximations. As the coupling strength increases, however, predicting the location and criticality of transition, whether continuous or discontinuous, from the phase dynamics may depend on the order of the phase approximation -- or a phase description of the network dynamics that neglects amplitudes may become impossible altogether. Here we analyze synchronization transitions and their criticality systematically for varying coupling strength in theory and experiments with coupled electrochemical oscillators. First, we analyze bifurcations analysis of synchrony and splay states in an abstract phase model and discuss conditions under which synchronization transitions with different criticalities are possible. Second, we illustrate that transitions with different criticality indeed occur in experimental systems. Third, we highlight that the amplitude dynamics observed in the experiments can be captured in a numerical bifurcation analysis of delay-coupled oscillators. Our results showcase that reduced order phase models may miss important features that one would expect in the dynamics of the full system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. T. Gross and I. G. Kevrekidis, Epl 82, 38004 (2008), arXiv:0702047 [nlin] .
  2. F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural Networks, Applied Mathematical Sciences No. 126 (Springer-Verlag, New York, 1997).
  3. H. Nakao, Contemporary Physics 57, 188 (2016).
  4. B. Pietras and A. Daffertshofer, Phys Rep 819, 1 (2019).
  5. I. Z. Kiss, Current Opinion in Chemical Engineering 21, 1 (2018).
  6. C. Börgers, Examples and Counterexamples 4, 100120 (2023).
  7. J. Guckenheimer and P. Worfolk, Nonlinearity 5, 1211 (1992).
  8. P. S. Skardal and A. Arenas, Communications Physics 3 (2020), 10.1038/s42005-020-00485-0, arXiv:1909.08057 .
  9. D. Wilson and J. Moehlis, Physical Review E 94, 052213 (2016).
  10. B. Letson and J. E. Rubin, SIAM Journal on Applied Dynamical Systems 17, 2414 (2018).
  11. D. Wilson and B. Ermentrout, Physical Review Letters 123, 164101 (2019).
  12. D. Wilson, Chaos 30 (2020), 10.1063/1.5126122.
  13. H. Sakaguchi and Y. Kuramoto, Progress of Theoretical Physics 76, 576 (1986).
  14. C. Kuehn and C. Bick, Science Advances 7, eabe3824 (2021).
  15. S. W. Haugland, Journal of Physics: Complexity 12, 3 (2021), 10.1038/s41467-021-25907-7 .
  16. B. Krauskopf and J. Sieber, “Bifurcation analysis of systems with delays: Methods and their use in applications,”  (Springer Cham, 2023) pp. 195–245.
  17. E. M. Izhikevich, SIAM Journal on Applied Mathematics 60, 1789 (2000).
  18. C. Bick, B. Rink,  and B. de Wolff, “Phase reductions for delay-coupled oscillators,”  (2024), In Prep.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 8 likes about this paper.