Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum Decoherence effects on precision measurements at DUNE and T2HK (2402.16395v2)

Published 26 Feb 2024 in hep-ph and hep-ex

Abstract: We investigate the potential impact of neutrino quantum decoherence on the precision measurements of standard neutrino oscillation parameters in the DUNE and T2HK experiments. We show that the measurement of $\delta_\text{CP}$, $\sin2\theta_{13}$ and $\sin2\theta_{23}$ is stronger effected in DUNE than in T2HK. On the other hand, DUNE would have a better sensitivity than T2HK to observe decoherence effects. By performing a combined analysis of DUNE and T2HK we show that a robust measurement of standard parameters would be possible, which is not guaranteed with DUNE data alone.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. G. Lindblad, “Completely positive maps and entropy inequalities,” Commun. Math. Phys. 40 no. 2, (1975) 147–151.
  2. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely Positive Dynamical Semigroups of N Level Systems,” J. Math. Phys. 17 (1976) 821.
  3. G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, and A. Palazzo, “Probing non-standard decoherence effects with solar and KamLAND neutrinos,” Phys. Rev. D 76 (2007) 033006, arXiv:0704.2568 [hep-ph].
  4. P. C. de Holanda, “Solar Neutrino Limits on Decoherence,” JCAP 03 (2020) 012, arXiv:1909.09504 [hep-ph].
  5. E. Lisi, A. Marrone, and D. Montanino, “Probing possible decoherence effects in atmospheric neutrino oscillations,” Phys. Rev. Lett. 85 (2000) 1166–1169, arXiv:hep-ph/0002053.
  6. V. D’Esposito and G. Gubitosi, “Constraints on quantum spacetime-induced decoherence from neutrino oscillations,” arXiv:2306.14778 [hep-ph].
  7. G. Barenboim and N. E. Mavromatos, “CPT violating decoherence and LSND: A Possible window to Planck scale physics,” JHEP 01 (2005) 034, arXiv:hep-ph/0404014.
  8. G. Barenboim, N. E. Mavromatos, S. Sarkar, and A. Waldron-Lauda, “Quantum decoherence and neutrino data,” Nucl. Phys. B 758 (2006) 90–111, arXiv:hep-ph/0603028.
  9. F. Benatti and R. Floreanini, “Massless neutrino oscillations,” Phys. Rev. D 64 (2001) 085015, arXiv:hep-ph/0105303.
  10. N. E. Mavromatos and S. Sarkar, “Probing Models of Quantum Decoherence in Particle Physics and Cosmology,” 12, 2006. arXiv:hep-ph/0612193.
  11. IceCube Collaboration, R. Abbasi et al., “Searching for Decoherence from Quantum Gravity at the IceCube South Pole Neutrino Observatory,” arXiv:2308.00105 [hep-ex].
  12. P. Coloma, J. Lopez-Pavon, I. Martinez-Soler, and H. Nunokawa, “Decoherence in Neutrino Propagation Through Matter, and Bounds from IceCube/DeepCore,” Eur. Phys. J. C 78 no. 8, (2018) 614, arXiv:1803.04438 [hep-ph].
  13. R. L. N. de Oliveira, M. M. Guzzo, and P. C. de Holanda, “Quantum Dissipation and C⁢P𝐶𝑃C\!Pitalic_C italic_P Violation in MINOS,” Phys. Rev. D 89 no. 5, (2014) 053002, arXiv:1401.0033 [hep-ph].
  14. G. Balieiro Gomes, M. M. Guzzo, P. C. de Holanda, and R. L. N. Oliveira, “Parameter Limits for Neutrino Oscillation with Decoherence in KamLAND,” Phys. Rev. D 95 no. 11, (2017) 113005, arXiv:1603.04126 [hep-ph].
  15. A. L. G. Gomes, R. A. Gomes, and O. L. G. Peres, “Quantum decoherence and relaxation in neutrinos using long-baseline data,” arXiv:2001.09250 [hep-ph].
  16. J. A. B. Coelho, W. A. Mann, and S. S. Bashar, “Nonmaximal θ23subscript𝜃23\theta_{23}italic_θ start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT mixing at NOvA from neutrino decoherence,” Phys. Rev. Lett. 118 no. 22, (2017) 221801, arXiv:1702.04738 [hep-ph].
  17. G. Balieiro Gomes, D. V. Forero, M. M. Guzzo, P. C. De Holanda, and R. L. N. Oliveira, “Quantum Decoherence Effects in Neutrino Oscillations at DUNE,” Phys. Rev. D 100 no. 5, (2019) 055023, arXiv:1805.09818 [hep-ph].
  18. J. A. Carpio, E. Massoni, and A. M. Gago, “Testing quantum decoherence at DUNE,” Phys. Rev. D 100 no. 1, (2019) 015035, arXiv:1811.07923 [hep-ph].
  19. JUNO Collaboration, J. Wang et al., “Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment,” JHEP 06 (2022) 062, arXiv:2112.14450 [hep-ex].
  20. V. De Romeri, C. Giunti, T. Stuttard, and C. A. Ternes, “Neutrino oscillation bounds on quantum decoherence,” JHEP 09 (2023) 097, arXiv:2306.14699 [hep-ph].
  21. Y. Farzan and T. Schwetz, “A decoherence explanation of the gallium neutrino anomaly,” SciPost Phys. 15 no. 4, (2023) 172, arXiv:2306.09422 [hep-ph].
  22. C. Giunti and C. A. Ternes, “Confronting solutions of the Gallium Anomaly with reactor rate data,” Phys. Lett. B 849 (2024) 138436, arXiv:2312.00565 [hep-ph].
  23. C. Giunti, Y. F. Li, C. A. Ternes, and Z. Xin, “Reactor antineutrino anomaly in light of recent flux model refinements,” Phys. Lett. B 829 (2022) 137054, arXiv:2110.06820 [hep-ph].
  24. C. Giunti, Y. F. Li, C. A. Ternes, O. Tyagi, and Z. Xin, “Gallium Anomaly: critical view from the global picture of ν𝜈\nuitalic_νe𝑒{}_{e}start_FLOATSUBSCRIPT italic_e end_FLOATSUBSCRIPT and ν¯esubscript¯𝜈𝑒{\overline{\nu}}_{e}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT disappearance,” JHEP 10 (2022) 164, arXiv:2209.00916 [hep-ph].
  25. J. C. Carrasco, F. N. Díaz, and A. M. Gago, “Probing CPT breaking induced by quantum decoherence at DUNE,” Phys. Rev. D 99 no. 7, (2019) 075022, arXiv:1811.04982 [hep-ph].
  26. J. C. Carrasco-Martínez, F. N. Díaz, and A. M. Gago, “Uncovering the Majorana nature through a precision measurement of the CP phase,” Phys. Rev. D 105 no. 3, (2022) 035010, arXiv:2011.01254 [hep-ph].
  27. A. Capolupo, S. M. Giampaolo, and G. Lambiase, “Decoherence in neutrino oscillations, neutrino nature and CPT violation,” Phys. Lett. B 792 (2019) 298–303, arXiv:1807.07823 [hep-ph].
  28. G. Lindblad, “On the Generators of Quantum Dynamical Semigroups,” Commun. Math. Phys. 48 (1976) 119.
  29. A. M. Gago, E. M. Santos, W. J. C. Teves, and R. Zukanovich Funchal, “A Study on quantum decoherence phenomena with three generations of neutrinos,” arXiv:hep-ph/0208166.
  30. F. Benatti and R. Floreanini, “Open system approach to neutrino oscillations,” JHEP 02 (2000) 032, arXiv:hep-ph/0002221.
  31. T. Stuttard and M. Jensen, “Neutrino decoherence from quantum gravitational stochastic perturbations,” Phys. Rev. D 102 no. 11, (2020) 115003, arXiv:2007.00068 [hep-ph].
  32. R. L. N. Oliveira and M. M. Guzzo, “Quantum dissipation in vacuum neutrino oscillation,” Eur. Phys. J. C 69 (2010) 493–502.
  33. L. Buoninfante, A. Capolupo, S. M. Giampaolo, and G. Lambiase, “Revealing neutrino nature and C⁢P⁢T𝐶𝑃𝑇CPTitalic_C italic_P italic_T violation with decoherence effects,” Eur. Phys. J. C 80 no. 11, (2020) 1009, arXiv:2001.07580 [hep-ph].
  34. F. Benatti and H. Narnhofer, “ENTROPY BEHAVIOR UNDER COMPLETELY POSITIVE MAPS,” Lett. Math. Phys. 15 (1988) 325.
  35. C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics. 2007.
  36. J. Carpio, E. Massoni, and A. M. Gago, “Revisiting quantum decoherence for neutrino oscillations in matter with constant density,” Phys. Rev. D 97 no. 11, (2018) 115017, arXiv:1711.03680 [hep-ph].
  37. P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle, “2020 global reassessment of the neutrino oscillation picture,” JHEP 02 (2021) 071, arXiv:2006.11237 [hep-ph].
  38. Hyper-Kamiokande Proto- Collaboration, K. Abe et al., “Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande,” PTEP 2015 (2015) 053C02, arXiv:1502.05199 [hep-ex].
  39. DUNE Collaboration, B. Abi et al., “Experiment Simulation Configurations Approximating DUNE TDR,” arXiv:2103.04797 [hep-ex].
  40. DUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE,” JINST 15 no. 08, (2020) T08008, arXiv:2002.02967 [physics.ins-det].
  41. DUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics,” arXiv:2002.03005 [hep-ex].
  42. DUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume III: DUNE Far Detector Technical Coordination,” JINST 15 no. 08, (2020) T08009, arXiv:2002.03008 [physics.ins-det].
  43. DUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV: Far Detector Single-phase Technology,” JINST 15 no. 08, (2020) T08010, arXiv:2002.03010 [physics.ins-det].
  44. P. Huber, M. Lindner, and W. Winter, “Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator),” Comput. Phys. Commun. 167 (2005) 195, arXiv:hep-ph/0407333 [hep-ph].
  45. P. Huber, J. Kopp, M. Lindner, M. Rolinec, and W. Winter, “New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator,” Comput. Phys. Commun. 177 (2007) 432–438, arXiv:hep-ph/0701187 [hep-ph].
  46. “Oscillation physics with hyper-kamiokande,” 2022. https://agenda.infn.it/event/30418/contributions/170639/attachments/95720/131789/NOW2022_ZhenxiongXie_v2.pdf.
  47. “Hyper-kamiokande lbl physics sensitivity,” 2023. https://indico.cern.ch/event/1216905/contributions/5451854/attachments/2702796/4691430/HK_LBL_Sensitivity_NuFACT.pdf.
  48. “Pre-defined experiment files.” https://mpi-hd.mpg.de/personalhomes/globes/glb/T2HK.html.
  49. T2K Collaboration, K. Abe et al., “Measurements of neutrino oscillation parameters from the T2K experiment using 3.6×10213.6superscript10213.6\times 10^{21}3.6 × 10 start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT protons on target,” Eur. Phys. J. C 83 no. 9, (2023) 782, arXiv:2303.03222 [hep-ex].
  50. DUNE Collaboration, T. Alion et al., “Experiment Simulation Configurations Used in DUNE CDR,” arXiv:1606.09550 [physics.ins-det].
  51. T2K Collaboration, K. Abe et al., “Updated T2K measurements of muon neutrino and antineutrino disappearance using 3.6×1021 protons on target,” Phys. Rev. D 108 no. 7, (2023) 072011, arXiv:2305.09916 [hep-ex].
  52. NOvA Collaboration, M. A. Acero et al., “Improved measurement of neutrino oscillation parameters by the NOvA experiment,” Phys. Rev. D 106 no. 3, (2022) 032004, arXiv:2108.08219 [hep-ex].
  53. NOvA, R. Group Collaboration, M. A. Acero et al., “Expanding neutrino oscillation parameter measurements in NOvA using a Bayesian approach,” arXiv:2311.07835 [hep-ex].
  54. H. Nunokawa, S. J. Parke, and J. W. F. Valle, “CP Violation and Neutrino Oscillations,” Prog. Part. Nucl. Phys. 60 (2008) 338–402, arXiv:0710.0554 [hep-ph].
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 tweets and received 21 likes.

Upgrade to Pro to view all of the tweets about this paper: